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ABSTRACT
The growing amount of XML encoded data exchanged over the In-
ternet increases the importance of XML based publish-subscribe
(pub-sub) and content based routing systems. The input in such
systems typically consists of a stream of XML documents and a
set of user subscriptions expressed as XML queries. The pub-sub
system then filters the published documents and passes them to the
subscribers. Pub-sub systems are characterized by very high input
ratios, therefore the processing time is critical. In this paper we
propose a “pure hardware” based solution, which utilizes XPath
query blocks on FPGA to solve the filtering problem. By utiliz-
ing the high throughput that an FPGA provides for parallel pro-
cessing, our approach achieves drastically better throughput than
the existing software or mixed (hardware/software) architectures.
The XPath queries (subscriptions) are translated to regular expres-
sions which are then mapped to FPGA devices. By introducing
stacks within the FPGA we are able to express and process a wide
range of path queries very efficiently, on a scalable environment.
Moreover, the fact that the parser and the filter processing are per-
formed on the same FPGA chip, eliminates expensive communi-
cation costs (that a multi-core system would need) thus enabling
very fast and efficient pipelining. Our experimental evaluation re-
veals more than one order of magnitude improvement comparedto
traditional pub/sub systems.

1. INTRODUCTION
Publish/subscribe applications (or simply pub-sub) are animpor-
tant class of content-based dissemination systems where the mes-
sage transmission is guided by the message content, rather than
its destination IP address. System architectures may vary (cen-
tralized within a server or distributed over a network of brokers)
but they all follow the same asynchronous event-based commu-
nication paradigm. The input is a stream of messages, generated
outside of the system by a set ofpublishers. These messages are
then selectively delivered to interestedsubscribersthat have de-
clared their interest by submittingprofiles to the pub-sub system.
This process is also known asmessage filtering. Examples of pub-
sub systems include notification websites (e.g.www.hotwire.com,
news.google.comand www.ticketmaster.com), where a user can
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subscribe for specific events ("Rock concerts in Chicago") and get
automatic notifications when the event occurs. Increasingly such
environments are becoming XML-based, i.e., the messages are ex-
changed in XML while the users express their subscriptions using
XML query languages like XPath [31].

Given the high volumes of messages and profiles, the filteringpro-
cess becomes a critical performance requirement for pub-sub sys-
tems. The predominant solutions to this problem perform cluster-
ing of the user profiles based on their similarity in order to narrow
down the search in the profile space. This is done by the use of
Finite State Machines (FSM). In particular, elements of theuser
profiles are mapped to states in the state machine. The clustering
is then performed by combining multiple profiles in a single FSM
by analyzing and discovering the common profile paths. Sinceuser
profiles are typically known in advance (i.e., profiles play the role
of data, while documents play the role of traditional queries) it is
possible to be analyzed and clustered as needed before the filtering
process starts.

When a document arrives in a pub-sub system, it is parsed by an
event-driven parser like SAX [1] that reports low level parsing
events such as: “start document”, “start element”, etc. As events
are produced by the SAX parser, they are processed by the filter-
ing system which uses them to drive transitions between the FSM
states. For example, a transition is taken from the current FSM state
if there is an outgoing edge labeled with the tag currently being pro-
cessed. If during this process an “accept” FSM state is reached the
document satisfies the corresponding profile(s) associatedwith that
state.

Implementing the above approach on a traditional von Neumann
architecture would requires multiple clock cycles per instruction.
Consider for example, the “high level” task of identifying an
“open” tag during parsing. This corresponds to multiple lowlevel
instructions (e.g.loadandstore) where the execution of every such
instruction requires at least one clock cycle. This issue isknown as
thevon Neumann bottleneckand can limit the filtering speed to few
hundreds of clock cycles per processing a single XML tag.

Given the above bottleneck of von Neumann machines, an attempt
to improve performance is to execute the tasks in parallel byadding
more resources (i.e., many processors). While this idea will not
eliminate the bottleneck (each processor still uses multiple clock
cycles per operation) it will also create a large communication over-
head between the processors. For example, one could pipeline the
parsing with the filtering tasks by running them on differentpro-
cessors. However, when the parser produces an event it needsto



notify (communicate) the filtering processor about this event (thus
creating large interprocessor communication cost).

The way to resolve this limitation is to use a non-traditional highly
parallel architecture. In this paper we present a novel filtering ap-
proach which is based on the use of Field-Programmable Gate Ar-
rays (FPGA).

FPGAs are increasingly being made available as co-processors on
high-performance computation systems. They are packaged in
modules, which are dropped in CPU sockets on server mother-
boards with bridges to the FSB / Quickpath [27] [36] links on Intel
platforms and Hypertransport [6] link on AMD platforms. High
density FPGAs such as Xilinx Virtex-4LX 200 [37] [38] and Al-
tera Stratix EP2S80F [2] have millions of logic gates, abundant
high speed dual port memory, ALU blocks on the silicon fabric, and
have high speed multi Gbps speed I/O ports [38] [3] . These high
density FPGAs can be used to implement in hardware the compu-
tationally intensive portions of the software code. Multithreaded
software components with streaming data input and output like the
pub-sub applications are ideal candidates for acceleration on FPGA
co-processing systems since a huge amount of data can be pro-
cessed in parallel on the FPGA.

Since pub-sub XML filtering involves multiple queries processed
over a single document data-stream, it is possible to utilize FPGAs
for parallelizing the filtering performance. Each query canbe im-
plemented on the FPGA unit as a hardware datapath circuit and
with appropriate optimizations it is possible to fit thousands of
queries on a single FPGA chip. Moreover, having the parallelpro-
cessing modules implemented on the same chip eliminates theneed
for expensive communications between them. This in turn allows
for full pipelining of the parsing and filtering processes: as an event
is produced by the parser it is immediately forwarded to the fil-
tering module. This results in accelerated query processing and
furthermore leads to substantial savings in a general purpose com-
putation infrastructure by reducing the amount of power required
by the CPUs.

In this paper we present a “proof of concept” for the use of FPGAs
in boosting XML filtering performance. We utilize a four stepap-
proach that converts such query into hardware description,suitable
for implementation on FPGA. The first step involves conversion of
an XPath query to PERL compatible regular expressions (PCREs).
The regular expressions are clustered by their common prefixes in
order to produce more compact representation on the board and are
then translated to VHDL using our “regex to VHDL” compiler [24].
Moreover, in order to support parent-child relationships,we intro-
duce the use of stacks and modify the regular expression hardware
to use them. The highly optimized VHDL code is then deployed
on the FPGA board. The stream of documents is forwarded to the
board where it is processed with high degree of parallelism.Our ex-
perimental evaluation reveals that this architecture achieves orders
of magnitude improvement in the terms of running time compared
to the state of the art software based XML filtering systems.

The paper is organized as follows: Section 2 presents related work.
Section 3 provides in depth description of the proposed architec-
ture. Section 4 presents an experimental evaluation of the FPGA
approach compared to the state of the art software counterparts. Fi-
nally conclusions and open problems for further research appear in
section 5.

2. RELATED WORK
One of the first works that addressed XML filtering is the XFilter
[4]. This approach defines a Finite State Machine (FSM) for each
XPath user profile. Every tag (element) in the profile becomesa
state in the FSM, while the last tag becomes the accept state in
that FSM. These machines are then executed concurrently foreach
message in the input. In particular, a ‘start element’ eventdrives
the machine through its various transitions from state to state, while
an ‘end element’ event makes a transition backward to a previous
state. Finally, if an accepted state is reached, the document is re-
ported as a match to the corresponding profile’s subscriber.Later,
the YFilter [11] system improved the matching performance by
combining all profiles into a single Nondeterministic Finite Au-
tomaton (NFA). Common profile prefixes are combined and repre-
sented with a single set of states. This allows dramatic reduction in
the number of states needed to represent the set of user profiles. It
also improves the filtering performance of the system by processing
common profile paths only once.

Other FSM-based approaches use different techniques for building
the state machine as well as different types of machines. Forexam-
ple, [14] builds a single deterministic push down automatonusing
a lazy approach, [12] employs a lazily built Deterministic Finite
Automata (DFA), [22] builds a transducer, which employs a DFA
with a set of buffers, and [28] employs a hierarchical organization
of push down transducers with buffers.

All these solutions are similar in the sense that they traverse the pro-
vided input document in a top-down fashion (i.e. in-order traver-
sal) while advancing the state machine for each XML element (or
attribute) read. Another proposed approach is to use a bottom-up
traversal of the document. This idea takes into consideration the
fact that an XML document typically has its more selective ele-
ments located at its leaves and uses them to perform early pruning
in the query space. Examples of systems which utilize the bottom-
up approach include FiST [16] and BUFF [25].

The NFA based approaches discussed above are entirelysoftware
based solutions using the standardvon Neumann organization.
None of them takes advantage of specialized architectures to over-
come the bottleneck problem which appears during XML docu-
ment filtering.

Previous works [23, 19, 33] that have used FPGAs for process-
ing XML documents have mainly dealt with the problem of XML
parsing which in turn is transformed to implementing regular ex-
pressions on FPGAs. In particular, [23] proposes theZuXAengine
to parse XML documents. This engine employs state machines for
efficient parsing based on set of rules. The paper however does
not provide any discussion how this engine can be adapted to work
with the XPath or twig profiles common in the pub-sub systems.A
related FPGA based regular expression language parser adapted for
content based routing of an XML stream has been demonstratedin
[26].

There is also a large amount of research related to implementing
regular expressions on FPGAs [32, 18]. Here we build on our pre-
vious works [24] where we compiled PERL Compatible Regular
Expressions (PCRE) to VHDL for accelerating intrusion-detection
system rules using FPGAs. However, XPath query evaluation is
more complex than plain regular expressions. To this end we intro-
duce appropriate stacks that are implemented on the FPGA device.



The works in [33, 19] propose the use of a mixed hard-
ware/software architecture to solve simple XPath queries having
only parent-child axis. A finite state machine implemented in
FPGAs is facilitated to parse the XML document and to provide
partial evaluation of XPath predicates. The results are then reported
to the software part for further processing. Similarly to the ZuXA
engine, this architecture can only support simple XPath queries
with only parent-child axis.

There are also approaches that use specialized parallel architectures
for XML processing [17, 20, 21]. In particular, [17] uses theCell
Broadband Engine multi-processor which consists of 8 indepen-
dent processors (SPEs) that run the same software. This approach
achieves parallelism by parsing (eight) XML documents in parallel
at a time. Each processor implements the FSM of theZuXAen-
gine [23]. In addition to be only suitable for XML parsing, this
solution is a combination of hardware-software approach. Simi-
larly, the work in [20, 21] addresses ways to load-balance parallel
threads for low-level XML processing (e.g., XML parsing). There
is also work on running XML queries over documents that are frag-
mented among many processors [8, 10] and achieving parallelism
through partial query evaluation; nevertheless, this is anorthogonal
problem to filtering.

To the best of our knowledge our system is the first one to pro-
vide anentirelyhardware solution to the XML filtering problem in
pub-sub systems. It is also the first one able to efficiently evaluate
complex XPath queries with different types of navigation directions
(parent-child “/” as well as ancestor-descendant “//” axis) over the
stream of XML documents. While parallelism can be achieved with
multi-core machines (as a software-hardware solution), FPGAs of-
fer a viable alternative due to their power efficiency (less power
consumption and cooling costs) [34, 15] as well as higher through-
put. The work in [13], quantitatively demonstrates the benefits of
using FPGAs over general purpose CPUs for streaming applica-
tions. While multi-core systems come with 2 and 4 CPUs it is not
always feasible to achieve proportional speed-up due to thebottle-
neck in shared cache memory and the front side bus.

3. IMPLEMENTING XPATH PROFILES
ON FPGAS

We start this section with a short description of the FPGA archi-
tecture and the properties that make it appealing for XML filtering.
This is followed by a general overview (Figure 2) of our compila-
tion workflow, which loads the filtering logic on the FPGA chip.
Finally we present a detailed description of the individualsteps in
the workflow; this includes two optimizations, namely the common
prefix optimization and the area efficient character decoder.

A Field-Programmable Gate Array (or FPGA) is a semiconductor
device containing programmable logic components termed “Con-
figurable Logic Blocks” (CLB) connected trough programmable
interconnections. An illustration of a typical FPGA architecture
appears in Figure 1. The interconnections inside the deviceallow
logic blocks to be interconnected as needed by the user in order to
implement specific logic. Such devices allow implementation of
multiple datapaths operating in parallel which makes them suitable
for streaming applications like XML parsing and filtering. More-
over, because the datapath is implemented in hardware, the load
and store operations from the von Neumann model are eliminated
resulting in more efficient processing.

Figure 1: General Architecture of an FPGA. The reconfig-
urable hardware is realized with programmable SRAM blocks,
called CLB (Configurable Logic Blocks) and programmable
routing interconnects. A bitstream can program an FPGA to
realize the required hardware.

Figure 2: Compilation Flow of XPath expressions to FPGAs.
The XPATH profiles go through a four step compilation process
to generate the HDL. The lower gray section denotes the hard-
ware flow for converting HDL to a bitstream for the FPGA.

As it can be seen from Figure 2 in the first step of the compilation
workflow the tag elements in the XPath expressions, representing
the user profiles, are replaced with fixed length string encodings.
This is done to simplify the processing and to ensure that each
tag element occupies the minimum amount of area possible on the
FPGA device. Reducing the footprint of the individual XML tags
results in higher query density on the chip and thus better usage of
the hardware.

After this step the XPath expressions are translated to their equiva-
lent PCRE form. During this translation process the navigation di-
rections inside the XPath expression ( parent-child “/” andancestor-
descendant “//” ) are replaced with their PCRE counterparts. We
describe this process in detail later in this section. In order to fur-
ther reduce the query footprint on the FPGA device we clusterthe
regular expressions by their common prefixes. Those common pre-
fixes are implemented as a single block on the FPGA unit. The
result from the clustering step is a forest of “common prefix”trees.
Each tree is compiled to generate a set of VHDL hardware blocks.
The rest of the workflow involves FPGA specific compilation steps
which will be discussed later as well.

3.1 Dictionary Replacement
The area of the FPGA chip is a limited resource. In order to get
better usage, we minimize the tag footprint on the chip through a
dictionary replacement process which replaces the XML tagsin the
input documents and the user profiles with fixed length strings. In



Table 1: PCRE operators used for parsing XML tags.
Operator Meaning

\w Matches A to Z, a to z, 0-9, _
\s Matches a blank space
\c Matches A to Z, a to z
\d Matches a Decimal digit
+ Repeat 1 or more times
* Repeat 0 or more times
| OR

Figure 3: The block diagram for XPath <a0>//<b0>, showing
the implementation of the ancestor-descendant axis

our implementation the length of the strings is set to 2 symbols
which means that the size of all open tags is limited to 32 bits(2
symbols plus 2 tag markers of length 8 bits) and for close tagsto 40
bits. As an example, the <test.document> tag is mapped to <a1>,
while the closing tag </test.document> would map to </a1>.

3.2 XPath to Stack-enhanced Regular Ex-
pressions

If the XPath expression contains only the ancestor-descendant axis
the translation to regular expression is straightforward.While the
YFilter approach, maps an XPath profile to a sequence of NFA
states connected with transitions, our approach maps an XPath
profile to a regular expression. As an example the XPath profile
“a0//b0” will be translated to the regex “ <a0> [\w\s]+ [<\c\d>
| </\c\d>]∗ <b0> ”. The various regular expression operators are
explained in Table 1.

The regular expression in the above example accepts a sequence
of XML tags which starts with <a0> and includes <b0>. It first
matches the tag <a0>. Once this is matched, it will look for one (or
more) characters (the [\w\s]+ part) corresponding to text between
tags and then will check for any number (0 or more) of open OR
closed tags (the [<\c\d> | </\c\d>]∗ part) before it matches <b0>.

Moreover, in order for <b0> to be a descendant of <a0> in the doc-
ument, the regular expression should match before the closing of
<a0>. To implement this, during the hardware generation step for
this regular expression, our compiler automatically adds anegation
block on </a0> so that <b0> is matched before </a0> appears in
the stream. The block diagram of the regular expression on the
FPGA is shown in Figure 3. Each block represents a tag parser
that searches for the given tag in the document stream. The right
most hardware block (depicted as a circle), provides the final result
from the matching process of the regular expression. Each block
receives input from the 8 bit streaming XML interface and works
in parallel with the other blocks.

The translation of the parent-child axis to a regular expression re-
quires special treatment. This is due to the fact that the regular

Figure 4: The block diagram for XPath <a0>/<b0>, showing
the implementation of the parent-child axis. The additional
hardware includes the tag filter, stack and TOS match blocks.

expressions are memoryless structures and one needs to ensure that
the matched XML tags occur on consecutive levels in the docu-
ment. For example, the level on which the parent is matched should
be remembered so as to ensure that the child is matched on a con-
secutive level (e.g. it is immediately below the parent). The regular
expression hardware is thus modified to include the notion ofmem-
ory. In our implementation this is accomplished through theuse of
a tag stack which keeps the current path in the XML document.
When an open tag is encountered it is pushed into the stack. Sim-
ilarly when a close tag is reached it is popped from the top of the
stack (TOS).

An example of a XPath expression that includes parent-childaxis
is shown in Figure 4. The XPath expression “a0/b0” is trans-
lated to a modified regular expression with a stack control direc-
tive. The modified regular expression is: “ <a0> [\w\s]+ [<\c\d>
| </\c\d>]∗ [Stack1] <b0> ”.

When testing a parent-child relationship, in addition to checking for
the ancestor-descendant property we have to ensure that thelevel
difference between the respective tags is one. Hence we use an
extra hardware block – the TOS matching –, which continuously
monitors the top of the stack and ascertains that the matchedel-
ement <b0> is indeed a child of the previously matched element
<a0>.

Figure 4 describes how we monitor the current level. The XML tag
stack block, works in parallel with the ancestor-descendant block
on the FPGA. The additional Tag Filter block extracts XML tags
from the document stream. When an open XML tag is extracted,
it triggers the push function and this tag gets pushed into the stack.
In a similar way closing tags trigger the pop function and remove
the head of the stack. A difference with the previous ancestor-
descendant match is that finding <b0> after <a0> is not enough; we
need also that the top of the stack is <a0> (when <b0> is found).
Since many regular expressions are using the same XML input data
stream, we need only one stack block per data stream.

3.3 Common Prefix Optimization
The regular expressions derived from the XPath profiles typically
depict large commonality in their prefixes. For example “a0//b0//
c0//d0” and “a0//b0//c0//e0” share the common prefix “a0//b0//c0”,
with corresponding suffixes “d0” and “e0”. The hardware costof
implementing the regular expressions is measured in terms of the
FPGA area used to implement the logic. It is thus advantageous



Figure 5: An example FPGA organization denoting the input /
output data path with sixteen XPath expressions

to combine multiple regular expressions into a common prefixtree.
Such a tree can help reduce the area cost of the hardware by im-
plementing the common prefix as a single block on the chip. In
the above example, instead of implementing two regular expres-
sion hardware blocks and duplicating the “a0//b0//c0” logic, we
can have a single implementation for the common path. As a re-
sult, more profiles can fit in a given FPGA area.

Given a set of XPath profiles, we first create their regular expres-
sions and then sort them in alphabetical order. We then run a com-
mon prefix discovery algorithm on the sorted list of the regular ex-
pressions. The algorithm recursively grows the common prefix one
tag at a time. The result is a forest of common prefix trees, each
representing a set of profiles. From these trees we then create the
FPGA hardware.

3.4 Area Efficient Character Decoder Hard-
ware

Implementing XPath profiles on FPGAs mainly involves imple-
menting character matching blocks to identify XML tags in the in-
put document stream. The character matching hardware block[9]
compares sequences of characters from the input stream to a given
sequence that defines an XML tag. Figure 6 exemplifies the com-
parator hardware that matches an XML tag. Each character requires
an 8-bit comparator block. The implemented character matching
blocks for the XML tags consist of many redundant blocks, the
prime examples being the open “<”, close “>”, and end tag “/”
characters.

It is possible to simplify the character match hardware witha 8-
bit ASCII character pre-decoder. The character pre-decoding hard-
ware decodes the incoming ASCII data stream at the input. An 8-
bit input is decoded into one of 256 possible 1-bit charactersignal
every clock cycle. As an example, if the input was HEX “0x60”,
the output line for the character “a” would be high on that clock
cycle and the rest of the other 255 outputs would be all zeros.The

Figure 6: Block diagram of the Character Match Hardware
Block for a tag <a0>. The hardware is a 8-bit x 4 comparator
block.

Figure 7: Block diagram of the Character Pre-Decoder Hard-
ware Block for a tag <a0>. The hardware is a 1-bit x 4 com-
parator block.

character decoder hardware block simplifies character matching by
replacing 8-bit character match hardware blocks with a 1-bit com-
parator and results in area efficient hardware. Figure 7 depicts the
character pre-decoder block, and the simplified 1-bit comparator
blocks for matching an XML tag. Moreover since 1-bit data lines
are routed on the FPGA for each character in the XML tag, the
FPGA routing overhead is reduced, which in turn leads to a design
which offers faster clock speed.

3.5 FPGA Implementation of Regular Ex-
pressions

A regular expression syntax could be defined using various syn-
taxes such as PERL, UNIX, etc. Our implementation uses the
PERL semantics. The compiler uses a modified version of the
PCRE library v6.7 compilation flow. It simulates the behavior
of a regular expression in VHDL, suitable for implementation on
FPGA. We modified the compiler to take into account the stack di-
rectives and generate the hardware blocks to support parent-child
axes.

After obtaining the VHDL sources for the user profiles, we gener-
ate additional hardware blocks including an input ASCII decoder,
two output priority encoders (one each for queries with or without
parent-child axes) and the tag stack. We group the VHDL sources
into two sets, i.e. profiles without parent-child axes and profiles
with parent-child axes. The organization of XPath expressions on
the FPGA is depicted with an example in Figure 5. The four XPath
profiles on the left correspond to expressions that contain parent-
child axes and thus use the on-chip FPGA stack. When the stream-
ing document matches a given profile, the output priority encoder
is set to that profile.



We synthesize the generated VHDL code, using the XILINX syn-
thesis tool to obtain the hardware netlist. The next step involves
running the Place and Route tool, which report the clock frequency
of the hardware design.

Our target FPGA is a Virtex-4 LX 200 device, and the target hard-
ware is the Silicon Graphics RASC RC 100 board. In order for
our FPGAs to run on this board we had to add a hardware module
(RASC Core Services) which allows us to send and receive data
and control the FPGA from the host system. Finally we generate
the bitstreams that are loaded on the FPGA.

4. EXPERIMENTAL EVALUATION
This section describes our experimental setup and the obtained re-
sults when comparing the throughput of XML filtering performed
on FPGAs, with respect to software based filtering solutions, i.e.
the YFilter. This system is widely adopted as a software-based
XML filtering approach. The software part of the experimental
evaluation was executed on a Core 2 Quad 2.66 GHz with 8GB of
RAM available. We choose YFilter because it uses more general
approach for the XML filtering compared to other existing solu-
tions. For example the lazy DFA presented in [12] has been shown
to provide faster performance than the YFilter, but nevertheless as-
sumes certain constraints for documents and profiles. We leave
comparisons with such systems for future work.

In order to provide in depth evaluation of the performance for both
the hardware and software implementations, we use theToXGene
XML document generator [7]. This tool generates XPath profile
datasets for a specified DTD structure. We use the same set of
profiles to test all methods described in this section.

We have generated multiple sets of profiles with varying path
length, i.e. 2 Tags, 4 Tags and 6 Tags using the PathGenerator
class in YFilter. The number of queries in each set varies from 16
to 1024. The streaming documents, used in the evaluation, vary in
size from one to eight MBs.

During the experimental evaluation of the software approach we
measure the throughput of the system (the size of the document
set in megabytes provided as input divided by the time in seconds
between the moment when the set enters the system to the moment
those documents are filtered by the matching process).

For the hardware implementation we use the Silicon GraphicsAl-
tix 4700 [5] supercomputer system along with the RASC RC 100
[35] blade. We stream XML data stored in the memory (RAM) of
the Altix system to the FPGAs placed on the RASC blade. We also
stream the output of the priority encoders from the FPGA backto
the Altix system. The output of the priority encoders is alsocontin-
uously decoded by the host system, to filter the XPath expressions
that have a match with the current document. As an output we
provide the profile that is successfully matched as well as well the
location of the match inside the document structure.

The speed in the hardware implementation is also measured in
terms of throughput (MBytes/s). However we also measure the
area occupied by the hardware design since it is considered acriti-
cal resource for FPGAs. In order to obtain a better understanding of
the area/speed tradeoff which is something typical of FPGA based
systems, we progressively increase the number of XPaths profiles

processed on the FPGA. The total number varies from 16 up to
1024 profiles.

4.1 Area Utilization
With the first set of experiments we identify the impact of our
two optimizations (i) the common prefix and the (ii) character pre-
decoder on the area occupied on the chip. We consider four imple-
mentation scenarios:

• Unoptimized Hardware (Unop): A system implementation
without character decoding and with no common prefix op-
timization.

• Common Prefix Optimized Hardware (Com-P): A system
which uses the common prefix optimization of the queries
but without character pre-decoding.

• Unoptimized Hardware with Character Decoding (Unop-
CharDec): A system that utilizes a character pre-decoding
blocks, but without common prefix optimization.

• Common Prefix Optimized Hardware with Character Decod-
ing (Com-P-CharDec): A system which takes advantage of
both optimizations.

The results from these experiments are shown on Figure 8. The
general trend which can be observed across the plots is that the
occupied area increases linearly with increasing number ofXPath
queries for a given XPath length. The increased length of the
queries have the same impact over the area. As expected the unop-
timized hardware implementation is the one which consumes most
area out of all implementational scenarios. Sometimes thiscan be
prohibitively expensive. For example we were unable to implement
the dataset which contains 1024 Xpath Queries with 6 tags with this
approach because of space limitation on our FPGA.

In contrast the implementation which uses the common prefix opti-
mization along with character decoder produces the most efficient
area implementation of Xpath profiles. This approach is highly ef-
ficient when compared to the unoptimized hardware and in most
cases provides five to seven times area improvement.

4.2 Performance Speedup
In this experimental set we compare the performance of both the
hardware and software approaches. We use the same implementa-
tional scenarios discussed above with the same set of queries. The
results of the comparison can be depicted in Figure 9.

In particular, there is a gradual reduction in throughput with the in-
crease of the number of XPath profiles implemented on the FPGA.
On average the unoptimized character pre-decoder based FPGA de-
sign for XPath filtering offers higher throughput than otherdesigns.
The design that almost always leads to the slowest speeds is the
hardware implementation of common prefix optimized regularex-
pressions without the use of character pre-decoder hardware.

Here we also compare with the performance of the software ap-
proach (YFilter). A common characteristic is that all FPGA based
solutions are orders of magnitude (at cases 100 times) faster than
YFilter. The performance of YFilter appears constant because it is
limited from above by the bottleneck which appears in the tradi-
tional von Neumann architectures.
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Figure 8: Variation of FPGA Area (in %) with increasing numbe r of XPath expressions

4.3 Summary
The area/speed tradeoff, typical for FPGAa, is apparent in the sce-
nario with the implementation that uses the common prefix opti-
mization with character pre-decoder. This approach provides the
maximum area efficiency but with low throughput which for most
cases is almost as low as common prefix optimized hardware. In
general the common prefix optimization, even though improves
area efficiency, brings down the clock speed, and thus the through-
put of a FPGA based hardware filtering design. The second opti-
mization that uses character pre-decoders offers better area/speed
tradeoff.

The overall results of our experimentation lead to the conclu-
sion that using an FPGA for parallel and efficient XPath filtering
approach provides orders of magnitude throughput improvement
(around 100 times for some datasets). It was observed that increas-
ing XPath lengths decreased the speedup offered by FPGA. The
same is also true about the increasing number of XPath profiles
implemented on FPGA. Moreover common prefix optimized hard-
ware, both with and without character pre-decoder providesbet-
ter area utilization but lowers the system throughput. The reason
is that, adding hardware complexity leads to lower clock rates on
the FPGA. The unoptimized character decoder based FPGA imple-
mentation of XPath filtering offers the best area speed tradeoff.

5. CONCLUSIONS AND OPEN PROB-
LEMS

This paper provides a preliminary implementation of XML filter-
ing using a flexible FPGA architecture. Such filtering is limited
in traditional Von Neumann architectures by the presence ofa bot-
tleneck between the CPU and memory. The execution of a single
instruction requires multiple clock cycles for fetching, processing
and storing the data back into memory. Using FPGAs alleviates
this problem, by removing unnecessary operations and performing
an instruction over the streaming data in a single clock cycle. Our
experimental evaluation reveals order of magnitude (around 100
times) improvement in the performance speedup. We presented a
hardware design and optimizations for efficiently handlingXPath
profile queries.

The idea of combining FPGAs and XML processing leads to many
directions for further research. While our approach processes doc-
uments in a ‘top-down’ fashion, it is interesting to examinewhether
a ‘bottom-up’ solution is also possible. This means that document
paths are first stacked and their leaf nodes are examined firstfor
a match (which will be advantageous for documents whose more
selective tags are at the leaves). A comparison with other software
implemented XML filtering techniques (like lazy-DFA based ap-
proaches) is also interesting. One open problem is how to deal with
dynamic updates (deletions and insertions) on the profile queries.
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Figure 9: FPGA and YFilter (Software) throughput comparison with increasing number of XPath profiles.

A natural extension is to provide support for twig profiles. Unlike
XPath profiles, which can only look for the presence of a givenpath
inside the structure of the XML document, a twig pattern query
identifies more complex structures like trees. To support twig pro-
files in our system we need a different approach that the architec-
ture described in Section 3.

A straightforward solution for the twig pattern matching problem
is to decompose the twig query into individual paths and process
each path separately. The results from the individual pathsare then
joined together in a post processing step to produce the finalout-
come of the query. This approach (which would also work with
our current XPath architecture) however requires extra processing
time: first, there may be many path matches not related to the twig
(false positives that need to be eliminated); second, the common
sections of individual paths will be processed multiple times which
is redundant.

Instead, a more promising approach is to employholistic twig pro-
file filtering, based on the Prüfer sequence [29] encodings ofthe
XML document and the profiles. A Prüfer sequence was originally
used in graph theory to describe aunique sequentialencoding of
a labeled tree. Since both the streaming XML document and the
profiles represent trees, such encoding is easily attainable through
tree traversals. This approach has been used in the past in soft-
ware based XML filtering systems like PRIX [30] and FiST [16].

The main idea is to reduce the problem of twig matching to subse-
quence matching between the document and the profiles.

The reason why the Prüfer encoding of XML documents is an ap-
pealing method for identifying twig pattern matches withina docu-
ment is because it captures well the document’s structure. In partic-
ular, the sequence carries enough information to check parent-child
and ancestor-descendant relationships within a tree structure. In
particular, if a tree Q is a subgraph of another tree T then thePrüfer
encoding of Q is a subsequence of the Prüfer encoding of T [30].
The reverse however is not true (i.e., we can have false positives).
Since the nature of subsequence matching leads also to sequential
processing over the document (like parsing and filtering), we can
then take advantage of the FPGA properties. We have currently
an initial implementation of an FPGA architecture for supporting
twig matching and are experimenting with approaches to efficiently
eliminate false positives within the FPGA.

Another interesting future direction would be a comparisonbe-
tween multiple FPGAs and multi-core machines. Finally, an or-
thogonal problem is whether FPGAs can enable faster multi-query
XML processing over an archived collection of documents.
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