Boosting XML Filtering with a Scalable FPGA-based
Architecture

Abhishek Mitra, Marcos R. Vieira, Petko Bakalov, Walid Najjar, Vassilis J. Tsotras
University of California
. __ Riverside, CA 92521, USA
{amitra,mvieira,pbakalov,najjar,tsotras}@cs.ucr.edu

ABSTRACT

The growing amount of XML encoded data exchanged over the In-
ternet increases the importance of XML based publish-siliesc
(pub-sub) and content based routing systems. The inputan su
systems typically consists of a stream of XML documents and a
set of user subscriptions expressed as XML queries. Thesphb-
system then filters the published documents and passes ¢hbim t
subscribers. Pub-sub systems are characterized by veryriggt
ratios, therefore the processing time is critical. In thigogr we
propose a “pure hardware” based solution, which utilizestkP
query blocks on FPGA to solve the filtering problem. By utiliz
ing the high throughput that an FPGA provides for paralle-pr
cessing, our approach achieves drastically better thmutgthan

the existing software or mixed (hardware/software) aedttitres.
The XPath queries (subscriptions) are translated to regulares-
sions which are then mapped to FPGA devices. By introducing
stacks within the FPGA we are able to express and processea wid
range of path queries very efficiently, on a scalable enwiremt.
Moreover, the fact that the parser and the filter processiager-
formed on the same FPGA chip, eliminates expensive communi-
cation costs (that a multi-core system would need) thuslemab
very fast and efficient pipelining. Our experimental evétare-
veals more than one order of magnitude improvement comgared
traditional pub/sub systems.

1. INTRODUCTION

Publish/subscribe applications (or simply pub-sub) aréngor-
tant class of content-based dissemination systems wheneés-
sage transmission is guided by the message content, rater t
its destination IP address. System architectures may - (
tralized within a server or distributed over a network of kens)
but they all follow the same asynchronous event-based cemmu
nication paradigm. The input is a stream of messages, gedera
outside of the system by a set pfiblishers These messages are
then selectively delivered to interestedbscribersthat have de-
clared their interest by submittingrofilesto the pub-sub system.
This process is also known asessage filteringexamples of pub-
sub systems include notification websites (eagvw.hotwire.com
news.google.conand www.ticketmaster.com where a user can

This article is published under a Creative Commons Licengeeément
(http://creativecommons.org/licenses/by/3.0/).

You may copy, distribute, display, and perform the work, sdkrivative
works and make commercial use of the work, but you must atgilthe
work to the author and CIDR 2009.

4" Biennial Conference on Innovative Data Systems ResearthR)C
January 4-7, 2009, Asilomar, California, USA.

subscribe for specific events ("Rock concerts in Chicagnt]) get

automatic notifications when the event occurs. Increagiagth

environments are becoming XML-based, i.e., the message=xar
changed in XML while the users express their subscriptisisgu
XML query languages like XPath [31].

Given the high volumes of messages and profiles, the filtgniag
cess becomes a critical performance requirement for polsygsr
tems. The predominant solutions to this problem perfornstelu
ing of the user profiles based on their similarity in order &oraw
down the search in the profile space. This is done by the use of
Finite State Machines (FSM). In particular, elements of uker
profiles are mapped to states in the state machine. The rthgste
is then performed by combining multiple profiles in a sing&MF
by analyzing and discovering the common profile paths. Sisee
profiles are typically known in advance (i.e., profiles plag tole
of data, while documents play the role of traditional querie is
possible to be analyzed and clustered as needed beforet¢hiadl
process starts.

When a document arrives in a pub-sub system, it is parsed by an
event-driven parser like SAX [1] that reports low level pags
events such as: “start document”, “start element”, etc. vents

are produced by the SAX parser, they are processed by the filte
ing system which uses them to drive transitions between 8id F
states. For example, a transition is taken from the currM Btate

if there is an outgoing edge labeled with the tag currentigdppro-
cessed. If during this process an “accept” FSM state is eshtite
document satisfies the corresponding profile(s) assoandthdhat
state.

Implementing the above approach on a traditional von Nemman
architecture would requires multiple clock cycles per rinstion.
Consider for example, the “high level” task of identifyingn a
“open” tag during parsing. This corresponds to multiple lewel
instructions (e.gload andstore where the execution of every such
instruction requires at least one clock cycle. This issl@a@vn as
thevon Neumann bottleneekd can limit the filtering speed to few
hundreds of clock cycles per processing a single XML tag.

Given the above bottleneck of von Neumann machines, an pttem
to improve performance is to execute the tasks in paralledulng
more resources (i.e., many processors). While this idelanwil
eliminate the bottleneck (each processor still uses meltjpck
cycles per operation) it will also create a large commuincabver-
head between the processors. For example, one could @kén
parsing with the filtering tasks by running them on differpm-
cessors. However, when the parser produces an event it teeeds

notify (communicate) the filtering processor about thisné\ehus 2. RELATED WORK

creating large interprocessor communication cost). One of the first works that addressed XML filtering is the X&ilt
[4]. This approach defines a Finite State Machine (FSM) fahea
The way to resolve this limitation is to use a non-traditidnighly XPath user profile. Every tag (element) in the profile becomes
parallel architecture. In this paper we present a novetifigeap- state in the FSM, while the last tag becomes the accept state i
proach which is based on the use of Field-Programmable Gate A that FSM. These machines are then executed concurrentiatdr
rays (FPGA). message in the input. In particular, a ‘start element’ ewgivies

the machine through its various transitions from stategtestvhile
FPGAs are increasingly being made available as co-processo an ‘end element’ event makes a transition backward to a quevi
high-performance computation systems. They are packaged i state. Finally, if an accepted state is reached, the docuinee-
modules, which are dropped in CPU sockets on server mother- ported as a match to the corresponding profile’s subscritmer,
boards with bridges to the FSB / Quickpath [27] [36] links atel the YFilter [11] system improved the matching performange b
platforms and Hypertransport [6] link on AMD platforms. Hig combining all profiles into a single Nondeterministic Fenifu-
density FPGAs such as Xilinx Virtex-4LX 200 [37] [38] and Al- tomaton (NFA). Common profile prefixes are combined and repre
tera Stratix EP2S80F [2] have millions of logic gates, alaumd sented with a single set of states. This allows dramaticatimiuin
high speed dual port memory, ALU blocks on the silicon fafaitd the number of states needed to represent the set of useeprdfil
have high speed multi Gbps speed I/O ports [38] [3] . Thesk hig also improves the filtering performance of the system byegssing
density FPGAs can be used to implement in hardware the compu-common profile paths only once.
tationally intensive portions of the software code. Multgaded
software components with streaming data input and outkettie Other FSM-based approaches use different techniques ifdirig
pub-sub applications are ideal candidates for acceleratid-PGA the state machine as well as different types of machinesexam-
co-processing systems since a huge amount of data can be prople, [14] builds a single deterministic push down automatsimg
cessed in parallel on the FPGA. a lazy approach, [12] employs a lazily built Deterministinite

Automata (DFA), [22] builds a transducer, which employs &ADF
Since pub-sub XML filtering involves multiple queries presed with a set of buffers, and [28] employs a hierarchical orgation
over a single document data-stream, it is possible to atfi2GAs of push down transducers with buffers.
for parallelizing the filtering performance. Each query banim-
plemented on the FPGA unit as a hardware datapath circuit and All these solutions are similar in the sense that they tis/the pro-

with appropriate optimizations it is possible to fit thoudsrof vided input document in a top-down fashion (i.e. in-ordewér-
gueries on a single FPGA chip. Moreover, having the parphel sal) while advancing the state machine for each XML element (
cessing modules implemented on the same chip eliminatestt attribute) read. Another proposed approach is to use arbat
for expensive communications between them. This in turowall traversal of the document. This idea takes into considerdtie

for full pipelining of the parsing and filtering processes:aa event fact that an XML document typically has its more selective- el
is produced by the parser it is immediately forwarded to the fi ments located at its leaves and uses them to perform eariyngru

tering module. This results in accelerated query procgsaird in the query space. Examples of systems which utilize thiobot
furthermore leads to substantial savings in a general gerpom- up approach include FiST [16] and BUFF [25].

putation infrastructure by reducing the amount of powetnen

by the CPUs. The NFA based approaches discussed above are erdofilyare

based solutions using the standardn Neumann organization
In this paper we present a “proof of concept” for the use of ARG~ None of them takes advantage of specialized architectareser-
in boosting XML filtering performance. We utilize a four stap- come the bottleneck problem which appears during XML docu-
proach that converts such query into hardware descripgigtgble ment filtering.
for implementation on FPGA. The first step involves con@rf
an XPath query to PERL compatible regular expressions (BRERE Previous works [23, 19, 33] that have used FPGAs for process-
The regular expressions are clustered by their common peefix ing XML documents have mainly dealt with the problem of XML
order to produce more compact representation on the bodrdran parsing which in turn is transformed to implementing regei&
then translated to VHDL using our “regex to VHDL" compiled]R pressions on FPGAs. In particular, [23] proposeszhXAengine
Moreover, in order to support parent-child relationshigs,intro- to parse XML documents. This engine employs state machaoves f
duce the use of stacks and modify the regular expressiomaaed efficient parsing based on set of rules. The paper howeves doe
to use them. The highly optimized VHDL code is then deployed not provide any discussion how this engine can be adaptedio w
on the FPGA board. The stream of documents is forwarded to the with the XPath or twig profiles common in the pub-sub systefns.
board where it is processed with high degree of parallelfSor.ex- related FPGA based regular expression language parseeddap
perimental evaluation reveals that this architectureeaes orders content based routing of an XML stream has been demonstirated
of magnitude improvement in the terms of running time coragar [26].
to the state of the art software based XML filtering systems.

There is also a large amount of research related to impléngent
The paper is organized as follows: Section 2 presents telebek. regular expressions on FPGAs [32, 18]. Here we build on og pr
Section 3 provides in depth description of the proposeditach vious works [24] where we compiled PERL Compatible Regular
ture. Section 4 presents an experimental evaluation of R@A Expressions (PCRE) to VHDL for accelerating intrusioned&ibn
approach compared to the state of the art software coumterfa system rules using FPGAs. However, XPath query evaluaton i
nally conclusions and open problems for further researpleapin more complex than plain regular expressions. To this enchtve-i
section 5. duce appropriate stacks that are implemented on the FPGéedev

The works in [33, 19] propose the use of a mixed hard-
ware/software architecture to solve simple XPath querasnig
only parent-child axis. A finite state machine implementad i
FPGAs is facilitated to parse the XML document and to provide
partial evaluation of XPath predicates. The results ane thported

to the software part for further processing. Similarly te BuXA
engine, this architecture can only support simple XPathrigse
with only parent-child axis.

There are also approaches that use specialized paraliatares
for XML processing [17, 20, 21]. In particular, [17] uses tGell
Broadband Engine multi-processor which consists of 8 irdep
dent processors (SPEs) that run the same software. Thieaaghpr
achieves parallelism by parsing (eight) XML documents irapel
at a time. Each processor implements the FSM ofzhXAen-
gine [23]. In addition to be only suitable for XML parsing,igh
solution is a combination of hardware-software approachmi-S
larly, the work in [20, 21] addresses ways to load-balancalleh
threads for low-level XML processing (e.g., XML parsing)hére
is also work on running XML queries over documents that aag-fr
mented among many processors [8, 10] and achieving pasailel
through partial query evaluation; nevertheless, this isréfimogonal
problem to filtering.

To the best of our knowledge our system is the first one to pro-
vide anentirelyhardware solution to the XML filtering problem in
pub-sub systems. It is also the first one able to efficienthjuate
complex XPath queries with different types of navigatiorediions
(parent-child “/” as well as ancestor-descendant “//” priger the
stream of XML documents. While parallelism can be achievild w
multi-core machines (as a software-hardware solution{; &A#of-

fer a viable alternative due to their power efficiency (lessver
consumption and cooling costs) [34, 15] as well as higheudin-

put. The work in [13], quantitatively demonstrates the lignef
using FPGAs over general purpose CPUs for streaming applica
tions. While multi-core systems come with 2 and 4 CPUs it is no
always feasible to achieve proportional speed-up due tbattée-
neck in shared cache memory and the front side bus.

3. IMPLEMENTING XPATH PROFILES

ON FPGAS

We start this section with a short description of the FPGAarc
tecture and the properties that make it appealing for XMEffittg.
This is followed by a general overview (Figure 2) of our colapi
tion workflow, which loads the filtering logic on the FPGA chip
Finally we present a detailed description of the individsiglps in
the workflow; this includes two optimizations, namely thernon
prefix optimization and the area efficient character decoder

A Field-Programmable Gate Array (or FPGA) is a semiconducto
device containing programmable logic components termezh=C
figurable Logic Blocks” (CLB) connected trough programneabl
interconnections. An illustration of a typical FPGA arduiture
appears in Figure 1. The interconnections inside the delog
logic blocks to be interconnected as needed by the user ar tod
implement specific logic. Such devices allow implementatid
multiple datapaths operating in parallel which makes theitabkle
for streaming applications like XML parsing and filtering.ohké-
over, because the datapath is implemented in hardwarepék |
and store operations from the von Neumann model are eligdnat
resulting in more efficient processing.

Logic Oo0o 0o oo Ooad
Block\

o0 LT[][
Block

oo 00 0o

OO 0o oo OO

OO0 0o oo OO

0o

Figure 1: General Architecture of an FPGA. The reconfig-
urable hardware is realized with programmable SRAM blocks,
called CLB (Configurable Logic Blocks) and programmable
routing interconnects. A bitstream can program an FPGA to
realize the required hardware.

TAG XPath to Common REGEX
XPATH Replace- PCRE Prefix To VHDL
Queries ment Regex Optimization Compiler
FPGA Bitstream 1
f Congregation Synthesis,
FPGA Bitstream 2 With Core Area : Piace and
- Analysis
Services Route
FPGA Bitstreamn
FPGA Tool Flow Section

Figure 2: Compilation Flow of XPath expressions to FPGAs.

The XPATH profiles go through a four step compilation process

to generate the HDL. The lower gray section denotes the hard-
ware flow for converting HDL to a bitstream for the FPGA.

As it can be seen from Figure 2 in the first step of the compitati
workflow the tag elements in the XPath expressions, reptiegen
the user profiles, are replaced with fixed length string eimgrsd
This is done to simplify the processing and to ensure thah eac
tag element occupies the minimum amount of area possibleeon t
FPGA device. Reducing the footprint of the individual XMlg&a
results in higher query density on the chip and thus betageisf
the hardware.

After this step the XPath expressions are translated to ¢logiiva-
lent PCRE form. During this translation process the naiagedi-
rections inside the XPath expression (parent-child “/” andestor-
descendant “//") are replaced with their PCRE counterpaie
describe this process in detail later in this section. Ireotd fur-
ther reduce the query footprint on the FPGA device we clubier
regular expressions by their common prefixes. Those comman p
fixes are implemented as a single block on the FPGA unit. The
result from the clustering step is a forest of “common prefigeés.
Each tree is compiled to generate a set of VHDL hardware bklock
The rest of the workflow involves FPGA specific compilatiosyst
which will be discussed later as well.

3.1 Dictionary Replacement

The area of the FPGA chip is a limited resource. In order to get
better usage, we minimize the tag footprint on the chip thhoa
dictionary replacement process which replaces the XML itatiee
input documents and the user profiles with fixed length ssring

Table 1: PCRE operators used for parsing XML tags.

Operator Meaning

\w Matches Ato Z,ato z, 0-9, |
\s Matches a blank space
\c Matches AtoZ,atoz

\d Matches a Decimal digit

+ Repeat 1 or more times

* Repeat 0 or more times

| OR

<b0>
&
!</a0>

match match match

<al> <b0>

</a0>

SY

en

a 4

Streaming XML Character Input

XPATH Expression: a0//b0

Figure 3: The block diagram for XPath <a0>//<b0>, showing
the implementation of the ancestor-descendant axis

our implementation the length of the strings is set to 2 syimbo
which means that the size of all open tags is limited to 32 (&@its
symbols plus 2 tag markers of length 8 bits) and for closetimg6
bits. As an example, the <test.document> tag is mapped to,<al
while the closing tag </test.document> would map to </al>.

3.2 XPath to Stack-enhanced Regular Ex-

pressions
If the XPath expression contains only the ancestor-descgrakis
the translation to regular expression is straightforwakthile the
YFilter approach, maps an XPath profile to a sequence of NFA
states connected with transitions, our approach maps athXPa
profile to a regular expression. As an example the XPath profil
“a0//b0” will be translated to the regex “ <aOxw\s]" [<\c\d>
| <A\c\d>]* <b0>". The various regular expression operators are
explained in Table 1.

The regular expression in the above example accepts a sagjuen
of XML tags which starts with <a0> and includes <b0>. It first
matches the tag <a0>. Once this is matched, it will look fa (or
more) characters (th&y\s]™ part) corresponding to text between
tags and then will check for any number (0 or more) of open OR
closed tags (the [xc\d> | <Ac\d>]" part) before it matches <b0>.

Moreover, in order for <b0> to be a descendant of <a0> in tlee do
ument, the regular expression should match before thengasi
<a0>. To implement this, during the hardware generatiop f&ie

this regular expression, our compiler automatically addsgation
block on </a0> so that <b0> is matched before </a0> appears in
the stream. The block diagram of the regular expression en th
FPGA is shown in Figure 3. Each block represents a tag parser
that searches for the given tag in the document stream. ghe ri
most hardware block (depicted as a circle), provides thér@salt
from the matching process of the regular expression. Eamtkbl
receives input from the 8 bit streaming XML interface and kgor

in parallel with the other blocks.

The translation of the parent-child axis to a regular exgioesre-
quires special treatment. This is due to the fact that thalaeg

match
</a0>
en

Streaming XML Character Input

G

Tag

filter |

XPath Expression: a0/b0

TAG STACK on (BRAM)

Figure 4: The block diagram for XPath <a0>/<b0>, showing
the implementation of the parent-child axis. The additiond
hardware includes the tag filter, stack and TOS match blocks.

expressions are memoryless structures and one needs te #resu
the matched XML tags occur on consecutive levels in the docu-
ment. For example, the level on which the parent is matchedlgh

be remembered so as to ensure that the child is matched on a con
secutive level (e.g. itis immediately below the parent)e Tégular
expression hardware is thus modified to include the notionerh-

ory. In our implementation this is accomplished throughube of

a tag stack which keeps the current path in the XML document.
When an open tag is encountered it is pushed into the staok. Si
ilarly when a close tag is reached it is popped from the toghef t
stack (TOS).

An example of a XPath expression that includes parent-chid

is shown in Figure 4. The XPath expression “a0/b0” is trans-
lated to a modified regular expression with a stack contnaadi
tive. The modified regular expression is: “ <aOaf\s]" [<\c\d>

| <A\c\d>]" [Stackl] <b0>".

When testing a parent-child relationship, in addition teaiing for

the ancestor-descendant property we have to ensure thegviie
difference between the respective tags is one. Hence weruse a
extra hardware block — the TOS matching —, which contingousl
monitors the top of the stack and ascertains that the matehed
ement <b0> is indeed a child of the previously matched elémen
<a0>.

Figure 4 describes how we monitor the current level. The Xisth t
stack block, works in parallel with the ancestor-descehthock

on the FPGA. The additional Tag Filter block extracts XMLgag
from the document stream. When an open XML tag is extracted,
it triggers the push function and this tag gets pushed irdstack.

In a similar way closing tags trigger the pop function and seen
the head of the stack. A difference with the previous ancesto
descendant match is that finding <b0> after <a0> is not enough
need also that the top of the stack is <a0> (when <b0> is found)
Since many regular expressions are using the same XML irgtat d
stream, we need only one stack block per data stream.

3.3 Common Prefix Optimization

The regular expressions derived from the XPath profilescaflyi
depict large commonality in their prefixes. For example /la@/
c0//d0” and “a0//b0//c0//eQ” share the common prefix “ait0”,
with corresponding suffixes “d0” and “e0”. The hardware aafst
implementing the regular expressions is measured in tefrtfeeo
FPGA area used to implement the logic. It is thus advantagjeou

32 T
XML Document Stream t < 0 >

a
| ASCII Decoder s-bit;)scu Stream 1 1 1 1‘
P
| XPaths with STACK || XPaths without STACK |
Figure 6: Block diagram of the Character Match Hardware
sici pgfl i ag | i g Block for a tag <a0>. The hardware is a 8-bit x 4 comparator
block.
XPath =] XPath = XPath =
XPath = XPath =p XPath = / AL
0 7
1 1
XPath =] XPath = XPath =
o
sbitasc| @ @ = <1 0
Stream 0T > Ve P Sy =
v v v L 7 ® o0 ..
5 o o 7¥ S50 A
utput Priority Encoder Output Priority Encoder c (1} B
a >
2 4 cQ
XML Query Data/Output a VAl
/7,1
b /
/

Figure 5: An example FPGA organization denoting the input /
output data path with sixteen XPath expressions

One of the 256 1-bit output is active each clock cycle

Figure 7: Block diagram of the Character Pre-Decoder Hard-
ware Block for a tag <a0>. The hardware is a 1-bit x 4 com-
“parator block.

to combine multiple regular expressions into a common ptegix
Such a tree can help reduce the area cost of the hardware by im
plementing the common prefix as a single block on the chip. In

the above example, instead of implementing two regularesxpr
sion hardware blocks and duplicating the “a0//b0//c0” épgive

character decoder hardware block simplifies characterhimatdy

can have a single implementation for the common path. As a re- replacing 8-bit character match hardware blocks with at tdvin-

sult, more profiles can fit in a given FPGA area.

Given a set of XPath profiles, we first create their regularesqp
sions and then sort them in alphabetical order. We then rama ¢
mon prefix discovery algorithm on the sorted list of the regeix-
pressions. The algorithm recursively grows the commonpoefe

tag at a time. The result is a forest of common prefix trees) eac
representing a set of profiles. From these trees we theredteat
FPGA hardware.

3.4 Area Efficient Character Decoder Hard-

ware
Implementing XPath profiles on FPGAs mainly involves imple-
menting character matching blocks to identify XML tags ie th-
put document stream. The character matching hardware f@dck
compares sequences of characters from the input streamvera g

parator and results in area efficient hardware. Figure 7ctefiie
character pre-decoder block, and the simplified 1-bit coatpa
blocks for matching an XML tag. Moreover since 1-bit dataesn
are routed on the FPGA for each character in the XML tag, the
FPGA routing overhead is reduced, which in turn leads to @des
which offers faster clock speed.

3.5 FPGA Implementation of Regular Ex-

pressions

A regular expression syntax could be defined using varions sy
taxes such as PERL, UNIX, etc. Our implementation uses the
PERL semantics. The compiler uses a modified version of the
PCRE library v6.7 compilation flow. It simulates the behavio
of a regular expression in VHDL, suitable for implementatmn
FPGA. We modified the compiler to take into account the stack d
rectives and generate the hardware blocks to support pahédt

sequence that defines an XML tag. Figure 6 exemplifies the com- gxes.

parator hardware that matches an XML tag. Each characteiresqg
an 8-bit comparator block. The implemented character nragch

After obtaining the VHDL sources for the user profiles, weeyen

blocks for the XML tags consist of many redundant blocks, the ate additional hardware blocks including an input ASCIIaksr,

prime examples being the oper™, close “>", and end tag “/"
characters.

It is possible to simplify the character match hardware sit8-
bit ASCII character pre-decoder. The character pre-degoaard-

two output priority encoders (one each for queries with dhaut
parent-child axes) and the tag stack. We group the VHDL ssurc
into two sets, i.e. profiles without parent-child axes ancofifas
with parent-child axes. The organization of XPath expassion
the FPGA is depicted with an example in Figure 5. The four XPat

ware decodes the incoming ASCII data stream at the input.-An 8 profiles on the left correspond to expressions that contaient-

bit input is decoded into one of 256 possible 1-bit charasiggmal
every clock cycle. As an example, if the input was HEX “0x60”,
the output line for the character “a” would be high on thatcklo
cycle and the rest of the other 255 outputs would be all zéFbs.

child axes and thus use the on-chip FPGA stack. When thewstrea
ing document matches a given profile, the output priorityoelec
is set to that profile.

We synthesize the generated VHDL code, using the XILINX syn-
thesis tool to obtain the hardware netlist. The next steplues
running the Place and Route tool, which report the clockeagy

of the hardware design.

Our target FPGA is a Virtex-4 LX 200 device, and the targetihar
ware is the Silicon Graphics RASC RC 100 board. In order for
our FPGAs to run on this board we had to add a hardware module
(RASC Core Services) which allows us to send and receive data
and control the FPGA from the host system. Finally we geeerat
the bitstreams that are loaded on the FPGA.

4. EXPERIMENTAL EVALUATION

This section describes our experimental setup and thenwutaie-
sults when comparing the throughput of XML filtering perfauin

on FPGAs, with respect to software based filtering solutides

the YFilter. This system is widely adopted as a softwareetlas
XML filtering approach. The software part of the experiménta
evaluation was executed on a Core 2 Quad 2.66 GHz with 8GB of
RAM available. We choose YFilter because it uses more génera
approach for the XML filtering compared to other existingusol
tions. For example the lazy DFA presented in [12] has beewisho
to provide faster performance than the YFilter, but nevdes as-
sumes certain constraints for documents and profiles. We lea
comparisons with such systems for future work.

In order to provide in depth evaluation of the performanaebfath
the hardware and software implementations, we usdobx&ene
XML document generator [7]. This tool generates XPath peofil

processed on the FPGA. The total number varies from 16 up to
1024 profiles.

4.1 Area Utilization

With the first set of experiments we identify the impact of our
two optimizations (i) the common prefix and the (ii) charagtes-
decoder on the area occupied on the chip. We consider foueimp
mentation scenarios:

Unoptimized Hardwarelnop): A system implementation
without character decoding and with no common prefix op-
timization.

Common Prefix Optimized Hardwar€gdm-P): A system
which uses the common prefix optimization of the queries
but without character pre-decoding.

Unoptimized Hardware with Character Decodingnp-
CharDec): A system that utilizes a character pre-decoding
blocks, but without common prefix optimization.

Common Prefix Optimized Hardware with Character Decod-
ing (Com-P-CharDeq: A system which takes advantage of
both optimizations.

The results from these experiments are shown on Figure 8. The
general trend which can be observed across the plots ishbat t
occupied area increases linearly with increasing numbetRafth
queries for a given XPath length. The increased length of the

datasets for a specified DTD structure. We use the same set ofgqueries have the same impact over the area. As expecteddpe un

profiles to test all methods described in this section.

We have generated multiple sets of profiles with varying path

timized hardware implementation is the one which consumast m
area out of all implementational scenarios. Sometimesctimisbe
prohibitively expensive. For example we were unable to enpnt

length, i.e. 2 Tags, 4 Tags and 6 Tags using the PathGeneratorthe dataset which contains 1024 Xpath Queries with 6 tagsthii

class in YFilter. The number of queries in each set varies ft6
to 1024. The streaming documents, used in the evaluatiop,iva
size from one to eight MBs.

During the experimental evaluation of the software apgnoae
measure the throughput of the system (the size of the dodumen
set in megabytes provided as input divided by the time inrsd€o

approach because of space limitation on our FPGA.

In contrast the implementation which uses the common prefix o
mization along with character decoder produces the mosiegfi
area implementation of Xpath profiles. This approach islgigh
ficient when compared to the unoptimized hardware and in most
cases provides five to seven times area improvement.

between the moment when the set enters the system to the momen

those documents are filtered by the matching process).

For the hardware implementation we use the Silicon Graphlics

tix 4700 [5] supercomputer system along with the RASC RC 100
[35] blade. We stream XML data stored in the memory (RAM) of
the Altix system to the FPGAs placed on the RASC blade. We also
stream the output of the priority encoders from the FPGA hack
the Altix system. The output of the priority encoders is asatin-
uously decoded by the host system, to filter the XPath exjpress
that have a match with the current document. As an output we
provide the profile that is successfully matched as well dbtive
location of the match inside the document structure.

The speed in the hardware implementation is also measured in

terms of throughput (MBytes/s). However we also measure the
area occupied by the hardware design since it is considecet-a

cal resource for FPGAs. In order to obtain a better undedgtgrof

the area/speed tradeoff which is something typical of FP@geHd
systems, we progressively increase the number of XPatliigesro

4.2 Performance Speedup

In this experimental set we compare the performance of bah t
hardware and software approaches. We use the same impement
tional scenarios discussed above with the same set of qudtie
results of the comparison can be depicted in Figure 9.

In particular, there is a gradual reduction in throughpuhwlie in-
crease of the number of XPath profiles implemented on the FPGA
On average the unoptimized character pre-decoder basefl 8&G
sign for XPath filtering offers higher throughput than ottlesigns.
The design that almost always leads to the slowest speetig is t
hardware implementation of common prefix optimized regalar
pressions without the use of character pre-decoder haedwar

Here we also compare with the performance of the software ap-
proach (YFilter). A common characteristic is that all FPGasbd
solutions are orders of magnitude (at cases 100 times) fimte
YFilter. The performance of YFilter appears constant beeatis
limited from above by the bottleneck which appears in thditra
tional von Neumann architectures.

40 T T T T T - 80 T T T T T T
Com-P EXZd Com-P EZd M
35 Unop 3 . 70 + Unop =3
Com-P-CharDec Com-P-CharDec
. Unop-CharDec E==X i | . Unop-CharDec E==X
30 60
- 25 B o 50
’ 8
5 20 4 & a4}
e %
15 - 8 30
§ _
s ¥ s
16 32 64 128 256 512 1024 16 32 64 128 256 512 1024
of XPATH Queries - 2 Tags # of XPATH Queries - 4 Tags
80 T T T T T
Com-P E=zZA
70 Unop =23 .
Com-P-CharDec
60 L Unop-CharDec ==X |
. 50 S
>
N 40 G -
&
30 |+ B
20 |+ B
10 g —
0 1
16 32 64 128 256 512 1024
of XPATH Queries - 6 Tags
Figure 8: Variation of FPGA Area (in %) with increasing numbe r of XPath expressions
4.3 Summary 5. CONCLUSIONS AND OPEN PROB-

The area/speed tradeoff, typical for FPGAa, is apparerttarste-
nario with the implementation that uses the common prefix opt
mization with character pre-decoder. This approach pesvithe
maximum area efficiency but with low throughput which for mos
cases is almost as low as common prefix optimized hardware.

LEMS

This paper provides a preliminary implementation of XMLéfik

ing using a flexible FPGA architecture. Such filtering is tici

in traditional Von Neumann architectures by the presencelut-
. TR - IN tieneck between the CPU and memory. The execution of a single
general the common prefix optimization, even though impove jnsiryction requires multiple clock cycles for fetchingopessing
area efficiency, brings down the clock speed, and thus teediF 5hq storing the data back into memory. Using FPGAs allesiate
put of_ a FPGA based hardware filtering design. The second opti ;g problem, by removing unnecessary operations and ypeirig
mization that uses character pre-decoders offers beterspeed 5 instruction over the streaming data in a single clockecy€lur
tradeoff. experimental evaluation reveals order of magnitude (atol®0
times) improvement in the performance speedup. We pretente
hardware design and optimizations for efficiently handl{fgath
profile queries.

The overall results of our experimentation lead to the aoncl
sion that using an FPGA for parallel and efficient XPath fiftgr
approach provides orders of magnitude throughput imprevem
(around 100 times for some datasets). It was observed ttratis- The idea of combining FPGAs and XML processing leads to many
ing XPath lengths decreased the speedup offered by FPGA. Thegjiractions for further research. While our approach prsessioc-
same is also true about the increasing number of XPath pofile |, nantsin a ‘top-down’ fashion, itis interesting to examivieether
implemented on FPGA_. Moreover common prefix optimized hard- 5 ‘bottom-up’ solution is also possible. This means thatdeent
ware, both with and without character pre-decoder proviates paths are first stacked and their leaf nodes are examineddirst
ter area utilization but lowers the system throughput. Twsen a match (which will be advantageous for documents whose more

is that, adding hardware complexity leads to lower clocksain selective tags are at the leaves). A comparison with ottfervae
the FPGA. The unoptimized character decoder based FPGAimpl implemented XML filtering techniques (like lazy-DFA baseg+a

mentation of XPath filtering offers the best area speed tffde proaches) is also interesting. One open problem is how toxdea
dynamic updates (deletions and insertions) on the profieies.

450 g % 450
) - Com-P —+— " Com-P —+—
400 uUnop . 400 Unop
iy B, Com-P-CharDec ---*:-- Com-P-CharDec ---*:--
30 F & * Unop-CharDec - 30| Unop-CharDec -
v R YFilter - = - w K YFilter - = -
@ 300 | ., o A, 4 @ 300 e B,
=3 e, =3 ",
s s0p B A w R
e ¢ : 2 el T — B,
5 200 \ L S 7 5 200 T .
o ek 9] e i
‘E 150 |- — RN g ‘E 150 |- *’\\\\’:‘:::1-\-\-:-----x
100 R 100 T
50 R 50 -
o= B - - - _ W - & - - -4 - _ o == -B- - - - - w- . e o
A T T SRS L S O S
of XPATH Queries - 2 Tags # of XPATH Queries - 4 Tags
400
Com-P ——
350 - Unop .
e o Com-P-CharDec ---%:---
300+ 0 T, Unop-CharDec &]
% @, YFilter - & -
e ; DO B,
é 250 - g -
3 200%F 4
ey
j=2]
3 150 *\\,: i
E . 7"';---* r LEEEEEEEE] E
" 100 | \ i
50 -
o= 8- - - - — & - & - - -4 - _
% g % 2 <% % \
& 6 > <

of XPATH Queries - 6 Tags

Figure 9: FPGA and YFilter (Software) throughput comparison with increasing number of XPath profiles.

A natural extension is to provide support for twig profilemlille
XPath profiles, which can only look for the presence of a gyt
inside the structure of the XML document, a twig pattern guer
identifies more complex structures like trees. To suppoid fwo-
files in our system we need a different approach that the techi
ture described in Section 3.

A straightforward solution for the twig pattern matchingplem

is to decompose the twig query into individual paths and gsec
each path separately. The results from the individual patishen
joined together in a post processing step to produce thedirtal
come of the query. This approach (which would also work with
our current XPath architecture) however requires extragssing
time: first, there may be many path matches not related tontige t
(false positives that need to be eliminated); second, tihenoan
sections of individual paths will be processed multipleggmvhich

is redundant.

Instead, a more promising approach is to emglojstic twig pro-

file filtering, based on the Prifer sequence [29] encodinghef
XML document and the profiles. A Prifer sequence was orityinal
used in graph theory to describeunique sequentiaéncoding of

a labeled tree. Since both the streaming XML document and the
profiles represent trees, such encoding is easily attartabbugh
tree traversals. This approach has been used in the pasttin so
ware based XML filtering systems like PRIX [30] and FiST [16].

The main idea is to reduce the problem of twig matching to subs
guence matching between the document and the profiles.

The reason why the Priifer encoding of XML documents is an ap-
pealing method for identifying twig pattern matches withidocu-
ment is because it captures well the document’s structangartic-
ular, the sequence carries enough information to checkpateéld

and ancestor-descendant relationships within a treetstaic In
particular, if a tree Q is a subgraph of another tree T thetkiéer
encoding of Q is a subsequence of the Prifer encoding of T [30]
The reverse however is not true (i.e., we can have falseiyes)t
Since the nature of subsequence matching leads also torgedue
processing over the document (like parsing and filtering),can
then take advantage of the FPGA properties. We have curentl
an initial implementation of an FPGA architecture for suping
twig matching and are experimenting with approaches toieffity
eliminate false positives within the FPGA.

Another interesting future direction would be a comparien
tween multiple FPGAs and multi-core machines. Finally, an o
thogonal problem is whether FPGAs can enable faster muéiig
XML processing over an archived collection of documents.

Acknowledgements: This research was partially supported by
NSF grants CCF-0811416 and 11S-0705916 as well a gift from

on FPGA. InDesign Automation and Test in Europe Conf.
and Exhibition page 6, 2006.

CISCO. Marcos R. Vieira’s work has been funded by a CAPES [19] R. W. Linderman, C. S. Lin, and M. H. Linderman. FPGA

(Brazilian Federal Agency for Post-Graduate Educatianpfght
Ph.D. fellowship.

6. REFERENCES
[1] SAX: Simple API for XML. http://www.saxproject.org/.
[2] Altera. Stratix Il Device Family Data Sheet.
www.altera.com/literature/hb/stx2/stx2_sii5vl_0F,007.
[3] Altera. Stratix Il GX Transceiver FPGAs Overview. www.
altera.com/products/devices/stratix-fpgas/strafstratix-
ii-gx/features/transceiver/s2gx-mgt-transceiverlh2008.

M. Altinel and M. J. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In

Proc. of Very Large Data Bases (VLDBJages 5364, 2000.

[5] SGI Altix Family. SGI Altix family. www.sgi.com/
products/servers/altix/, 2006.

[6] AMD. AMD HyperTransport Technology. www.amd.com/
us-en/Processors/DevelopWithAMD/
0,30_2252_2353,00.html, 2008.

[7] D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons.

ToXgene: a template-based data generator for XML. In

SIGMOD Conferencepages 616—616, 2002.

Peter Buneman, Gao Cong, Wenfei Fan, and Anastasios

Kementsietsidis. Using partial evaluation in distributgebry

evaluation. InProc. of Very Large Data Bases (VLDB)ages

211-222, 2006.

Christopher R. Clark, Craig D. Ulmer, and David E.

Schimmel. An FPGA-based network intrusion detection

system with on-chip network interfacdatl. Journal of

Electronics 93(6):403-420, 2006.

Gao Cong, Wenfei Fan, and Anastasios Kementsietsidis.

Distributed query evaluation with performance guarantees

In SIGMOD Conferengepages 509-520, 2007.

Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Flser.

Path sharing and predicate evaluation for high-performmanc

XML filtering. ACM Trans. on Database Systems (TODS)

28(4):467-516, 2003.

T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu

Processing XML streams with deterministic automata and

stream indexesACM Trans. on Database Systems (TODS)

29(4):752-788, 2004.

Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A

quantitative analysis of the speedup factors of fpgas over

processors. liProc. of the ACM/SIGDA Int’l Symp. on Field

programmable gate arrays (FPGA)ages 162-170, 2004.

A. K. Gupta and D. Suciu. Stream processing of XPath

queries with predicates. BIGMOD Conferencgpages

419-430, 2003.

[15] Intel. Intel xeon 5160 tdp. ftp://download.intel.com
/design/network/papers/30117401.pdf, 2008.

[16] J. Kwon, P. Rao, B. Moon, and S. Lee. Fist: Scalable XML
document filtering by sequencing twig patternsPhoc. of
Very Large Data Bases (VLDB2005.

[17] S. Letz, M. Zedler, T. Thierer, M. Schutz, J. Roth, and
R. Seiffert. XML offload and acceleration with CEIl
broadband engine. lTech: Building Web 2,2006.

[18] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang.
Optimization of regular expression pattern matching discu

[4]

(8]

9]

[10]

[11]

[12]

[13]

[14]

acceleration of information management serviceslifgh
Performance Embedded Computing (HPEZ)04.

[20] W. Lu, K. Chiu, and Y. Pan. A parallel approach to XML
parsing. INEEE/ACM Int'| Workshop on Grid Computing
pages 223-230, 2006.

[21] W. Lu and D. Gannon. ParaXML: A parallel XML
processing model on multicore cpus. Technical report, Dept
of Computer Science, Indiana University, 2008.

[22] B. Ludascher, P. Mukhopadhyay, and Y. PapakonstantiAo

transducer-based XML query processorPhoc. of Very

Large Data Bases (VLDBpages 227-238, 2002.

J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, and

C. Larsson. XML accelerator engine. 18t Int. Workshop on

High Performance XML Processing004.

Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan.

Compiling pcre to fpga for accelerating snort ids. In

ACM/IEEE Symp. on Architecture for Networking and

Communication Systems (ANCZ)07.

M. Moro, P. Bakalov, and V. Tsotras. Early profile prugin

on XML-aware publish-subscribe systemsHroc. of Very

Large Data Bases (VLDBpages 866—877, 2007.

J. Moscola, Y. H. Cho, and J. W. Lockwood. Reconfigurable

content-based router using hardware-accelerated larguag

parserACM Trans. on Design Automation of Electronic

Systems (TODAES)3(2), 2008.

Nallatech and EDA Geek. Nallatech Showcases FSB, PCI

Express FPGA Accelerator Products at SGBBA Geek

2008.

[28] F. Peng and S. S. Chawathe. XPath queries on streaming
data. INSIGMOD Conferencepages 431-442, 2003.

[29] H. Prifer. Neuer beweis eines satzes liber permutatione
Archiv Fir Mathematik und Physik27):142-144, 1918.

[30] Praveen Rao and Bongki Moon. PRIX: Indexing and
querying XML using prifer sequences.noc. of Int’l
Conf. on Data Engineering (ICDEpages 288-300, 2004.

[31] W3C Recommendation. XML path language (XPath) version

1.0. www.w3.0rg/TR/xpath, 1999.

R. Sidhu and V. K. Prasanna. Fast regular expression

matching using FPGAs, 2001.

S. Spetka, S. Tucker, G. Ramseyer, and R. Linderman.

Imagery pattern recognition and pub/sub information

management. I186th IEEE Applied Imagery Pattern

Recognition Workshop (AIPR)ages 37—41, 2007.

David Strenski. FPGA floating point performance — a plenc

and paper evaluatioflPC Wirg January January 2007.

[35] RASC Development Team. Reconfigurable
application-specific computing user’s guide.
http://techpubs.sgi.com, February 2008.

[36] Business Wire and Nallatech. Nallatech to support and
deliver product for intel quickpath interconneBusiness
Wire.

[37] Xilinx. Virtex-4 Multi Platform FPGA. www.xilinx.com
/products/silicon_solutions/fpgas/virtex/virtex40(B.

[38] Xilinx. Virtex-4 RocketlO Multi-Gigabit Transceiver
UGO076 (v4.1). www.xilinx.com/support/
documentation/user_guides/ug076.pdf, November 2008.

(23]

[24]

[25]

[26]

[27]

[32]

[33]

[34]

