

CIDR Perspectives 2009

Principles for Inconsistency
Shel Finkelstein

SAP Research
3410 Hillview Avenue
Palo Alto, CA 94304

+1 650 461-1741

shel.finkelstein@sap.com

Rainer Brendle
SAP Research

3410 Hillview Avenue
Palo Alto, CA 94304

+1 650 687-4721

rainer.brendle@sap.com

Dean Jacobs
SAP Research

Dietmar-Hopp-Allee 16
69190 Walldorf, Germany

+49 171-3363250

dean.jacobs@sap.com

ABSTRACT
Data consistency is very desirable because strong semantic
properties make it easier to write correct programs that perform as
users expect. However, there are good reasons why consistency
may have to be weakened to achieve other business goals. In this
CIDR 2009 Perspectives paper, we present real-world reasons
inconsistency may be necessary, offer principles for managing
inconsistency coherently, and describe implementation
approaches we are investigating for sustainably scalable systems
that offer comprehensible user experiences despite inconsistency.

Categories and Subject Descriptors
H.2.4 [Systems]: Concurrency, Distributed databases, Object-
oriented databases, Parallel databases, Query processing, Rule-
based databases, Transaction processing. H.2.5 [Database
Administration]: Logging and recovery. H.2.8 [Database
applications]. J.1 [Administrative data processing]: Business,
Financial, Manufacturing. D.2.11 [Software Architectures]:
Data abstraction, Patterns. D.1.3 [Concurrent Programming]:
Distributed programming, Parallel programming.

General Terms
Design, Management, Performance, Reliability.

Keywords
Consistency, data management, database, transaction processing,
availability, manageability, scalability, business applications,
business objects, distributed systems, parallelism, concurrency.

1. INTRODUCTION
"A foolish consistency is the hobgoblin of little minds."
Ralph Waldo Emerson, “Self-Reliance”, 1841 [4]
A database, or more generally a data management system (DMS),
is Consistent if its state satisfies given integrity constraints. A
transaction is Consistent if its actions on consistent DMS states
always result in consistent states. Atomicity (all-or-nothing),
Isolation (transactions behave as if executed in serial order) and
Durability (committed changes are never lost), ensure that
execution of consistent transactions preserves DMS consistency
[7]. Real-world interactions associated with transactions are
outside of the DMS, but consistent transactions “normally”
behave correctly with respect to these interactions as well, e.g.,
cash is dispensed only after the cash withdrawal has been posted
to your bank account.
For distributed systems with replication, one could define
consistency very loosely, with weak integrity constraints, or very
tightly, based on single-copy serializability. But weak constraints
lose data semantics, while tight constraints eliminate some of the
advantages of replication (latency, as well as availability and
partition-tolerance, per CAP Principle/Theorem tradeoffs) [1, 6].
Except when there are uncompensatable and unapologizable real-
time consequences, it is more useful to speak of Subjective
Consistency (performing correct transactions based on the local
data state) and Eventual Consistency (convergence to equivalent
states at all replicas if there were no further transactions) [3, 9,
10].
Internet-scale data management systems [2,3] must achieve very
high levels of scalability and availability, and manage
inconsistent replicas in principled ways. There are principles for
managing inconsistency of partitioned/replicated data that are
application-dependent, and are followed in different ways [2, 3] in
internet-scale data management systems. However, principles for
managing inconsistency are also relevant for more traditional
enterprise applications and databases. This paper describes some
of those principles, with particular reference to experiences at
SAP, and describes some implementation approaches we are
investigating for sustainably scalable systems that offer
comprehensible user experiences despite inconsistency.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the work
to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

2. PRINCIPLES
This section includes 11 principles for managing DMS
inconsistency. Some of these principles are not directly about
consistency, but they have consequences for consistency due to
the CAP Principle. We hope to generate a vigorous discussion

CIDR Perspectives 2009

about associated tradeoffs across different schemes for managing
replication for availability, such as active systems with
asynchronous commits to backups, active systems with
synchronous commits to backups, active/active replication with
subjective/eventual consistency, and replication with strong
consistency.
We do not believe that inconsistency is appropriate for all
applications and all data, and we discuss user experience and
implementation issues for mixed systems (with different
consistency levels) in section 3.

2.1 Reality is real
Business data may not always correctly reflect the state of the
world or the business.
In organizations, people don’t have perfect information; the same
is true for systems. There is always some delay before entry of
information (or before processing of state-changing requests)
from devices, humans, partners or other parts of the company.
Even without distributed replication, systems must embrace delay
as a source of Subjective Consistency [9] that describes system
knowledge of reality, rather than reality itself. A DMS should
manage latency, incompleteness and even certain kinds of
unsoundness, rather than acting as if they don’t exist. For
example, a business may permit inventory levels to go negative if
a packager knows more about current inventory than the system
does. Of course uncontrolled integrity constraint violations are
problematic; the challenge is to have mechanisms that handle the
consequences of inconsistency. For negative inventories, the
system should track the history that resulted in negative inventory
levels, and eventually account for the discrepancy. See principles
2.2 and 2.9 for related discussions.

2.2 Out-of-order works
Transactions and events sometimes happen in unexpected
sequences, temporarily violating integrity constraints.
One of the simplest constraints is referential integrity, which
requires that child entities have valid parent entities. Referential
integrity may be handled via a foreign key (reference to a
business partner requires existence of the partner) or via a
hierarchical data structure (line items must appear in a purchase
order). In practice, data might not be received (or even
determined) before data that references it. Data generally enters
the enterprise IT infrastructure through front-end applications
such as Customer Relationship Management (CRM). When
entered, it is often incomplete, and since there is little
coordination between the users who enter data, often inconsistent.
Over time, as users collaborate and business processes are carried
out, the data moves towards backend applications and references
become more complete. Leads become qualified and turn into
Opportunities, which are won and become Orders, which are
processed by demand planning, which causes production
scheduling, which results in logistics.
Especially in the early stages of the data lifecycle, the DMS
should not bureaucratically prevent data entry. Instead, a
transaction should be able to enter what’s known “now”. For
example, Opportunities may refer to customers not yet entered. If
integrity constraints are violated, warnings can be given,
alerts/events generated, and new process steps scheduled. The
constraint still exists, but its violations are handled, rather than

prevented, so an “inconsistent” business state that would have
been regarded as unsound has been transformed into a system-
managed exception.

2.3 I’ll do it eventually
Secondary data need not be updated with primary data.
Primary data gets inserted (or perhaps updated) during
transactions. Other actions must reliably occur eventually, but
may be deferred, not occurring during the original transaction.
Examples of such secondary data are aggregates (such as invoice
total or quantity on hand) which might be bottlenecks if updated
within a transaction, materialized views and OLAP/data
warehouses. Eventual update implies that such secondary data
will not always be consistent with the primary data. Helland
explains why inconsistency of secondary indexes is necessary for
highly scalable systems [8], but as he emphasizes (and we’ll see
in principle 2.5), his point applies beyond secondary indexes.
SAP has utilized similar techniques for many years to avoid
database bottlenecks [5]. To reduce user wait times, the SAP
transaction model allows a transaction to complete when a
descriptor listing pending actions has been committed to the
database; the actions themselves are performed after control has
returned to the user. Logical locks are held until the actions have
completed, but these prevent access by other users, not the user
who performed the transaction. If that user immediately queries
the state of the system, the result of the transaction may not yet be
visible. Applications using asynchronous updates must be
designed to tolerate such inconsistency. (The SAP model also
supports synchronous updates at commit; that increases response
time but avoids this inconsistency.)
Additional sources of inconsistencies due to deferred updates
(which we think of as principled procrastination) appear in
subsequent principles.

2.4 Process steps should focus: At most one
transaction per process step
Processes should be made up of process steps, connected by
events. A process step should contain (at most) one transaction,
which commits (or at least, attempts to commit) at the end of the
step.
A process, such as transferring an employee from one department
to another, should be broken down into a series of steps, such as
reassigning the employee’s business responsibilities to other
employees, that are connected by events. Detailed considerations
of the nature of such events, which can be reliable, transactional,
or ordered, are beyond the scope of this paper, but aspects are
addressed by reliable message queue specifications and products,
such as the Java Message Service. For unreliable messaging, at-
least-once delivery can be used with idempotence [8].
Identifying process steps with transactions simplifies both the
programming model and system management. Including at most
one transaction in a process step ensures that the process step can
never partially complete its work; it either completes its
transaction or it doesn’t. And since the transaction boundary is the
end of the process step, there is no application-specified work
after transaction commit in a process step, so the transaction
either committed or it didn’t. (System infrastructure will have to
determine which if there’s a failure.) A committed transaction

CIDR Perspectives 2009

may enqueue events that result in additional process steps,
perhaps specified by application code in the transaction or by
system infrastructure. Transaction failures may enqueue post-
rollback actions but they must be non-transactional and
infrastructure-generated, since the transaction failed and the
process step ends at the transaction boundary. Process and
processor failures may mean that such post-rollback actions
cannot be generated locally, so retry, idempotence and other
approaches are necessary.
Not all actions in a process step can (or should) be rolled back.
There may be non-transactional writes, e.g., for auditing purposes,
which should not be rolled back even if a transaction fails. There
may be indirect effects, such as starting or stopping a resource,
that must be independently reversed by the system at some
appropriate time. Finally, there may be real-world actions taken
by a process step, typically post-commit because they won’t be
rolled back if transaction fails. (Compensation for real-world
actions is discussed in principle 2.9.)

2.5 Transactions should focus: Only one
entity updated per transaction
Whenever possible, update only a single (frequently hierarchical)
entity within a transaction. If updates must involve (or be
propagated to) other entities, do so using reliable/transactional
queues and process management/eventing techniques.
An entity is a business object, frequently hierarchical, such as an
order and its lineitems. The value of single entity transactions is
clearest when they involve data associated with multiple business
partners, or even multiple organizational systems running separate
databases within the same company. When entities from two
different organizational units are accessed in the same transaction,
a distributed (two-phase commit) transaction is required, which
impacts performance and availability. In the employee transfer
example, there is no need to reassign responsibilities across the
two departments in the same transaction.
A single organization may partition data by entity type and key,
where partitions are managed as separate “serialization units”
with separate logs. Entity location is determined dynamically,
e.g., by key range partitioning or with a dynamic hash table.
Following the focused transaction principle avoids commits
across multiple units, which might be distributed commits.
Helland proposes that highly scalable systems use single entity
transactions for this reason [8].
Even in single database systems, the focused transaction principle
may be valuable because it shortens and simplifies transactions,
which avoids conflicts, simplifies compensation (principle 2.9),
and promotes parallelism and locality. Designing an application
from the beginning so that its parts are loosely coupled supports
flexible distributed deployment. Ideally, a developer should rely
on tight coupling and sequential execution only when it is
required for correctness. Of course, good implementations should
transparently manage clever performance optimizations as
discussed in section 3..

2.6 Single Object Update per Process Step:
SOUPS on
Each Process Step consists of (at most) one transaction, updating
exactly one data object, possibly also generating reliable and/or
transactional events
This principle is a combination of principles 2.4 and 2.5, Focused
Process Steps and Focused Transactions. It’s called out as a
separate principle because the combined focus dramatically
simplifies the programming model and makes local, highly
parallel implementation feasible. (Note that enqueue and dequeue
operations on event queues, including transactional queues, are
always local operations, never distributed transactions, even when
delivery is to a remote system.)
Of course, the cost of SOUPS is that applications must tolerate
inconsistencies, and the DMS infrastructure must handle
inconsistencies. But since we must accept subjective and
eventual consistency due to CAP, and there are other sources of
inconsistency, an intelligent system design choice is to embrace
inconsistency management in a principled way whenever
possible.

2.7 I remember it well
Handle (almost all) updates as inserts of new data, and handle
deletes by marking data as deleted, rather than actually deleting.
SAP handles many updates in this “insert-only” way due to
regulatory requirements. But this principle can also help with
versioning, consistency within a transaction, concurrency control,
and, because past descriptions are available, eventual consistency.
In the inventory example of principle 2.1, the historical trace
might be used to identify a packer as the source of the
inconsistency. SAP uses a commutative update strategy
(“deltas”) and a merge update capability that relate to eventual
consistency within a single database system. OLTP transactions
should not refer to versions of data explicitly; instead, the DMS
should automatically use the appropriate data version.
In practice, unlimited data growth may be an issue, so the DMS
should provide data summarization and archival functionality,
while still addressing regulatory requirements and eventual
consistency.

2.8 Beware the consequences
Data written in transactions should describe what the
transactions do, not just transaction consequences. Business
processes should handle conflicts or anomalies either
immediately (conflict-resolution) or in a deferred mode (data
cleansing).
Describing operations, rather than (just) their consequences, helps
support eventual consistency assuming that data is inserted rather
than updated (per the previous principle). For example, entering
a banking withdrawal means entering the withdrawal, not just the
remaining balance. The balance may be updated in the same
transaction (if all account transactions are part of an account
entity that also includes balance), or perhaps in a deferred
transaction (if balance is handled as an aggregate). Note that how
transactions read account balance may be affected by this choice.
Operations may be described at a high logical level, with
consequences happening later; SAP follows this approach when
latency is an issue. This principle has a major impact on schema

CIDR Perspectives 2009

and (combined with other principles, such as non-determinism
and deferred update) process design, allowing conflicts to be
handled either immediately, via event-handling and process
management, or by a deferred cleansing process (which may itself
generate events reflecting its actions). It is particularly important
for operations on occasionally disconnected devices such as
mobile phones.

2.9 I think I can
Process steps and user experience should be designed to support
tentative operations and (what Pat Helland [9] aptly calls)
apology-oriented computing, where compensation is handled
using tentative operations and apologies.
In SAP’s Supply Chain Management (SCM), when one business
informs another than a given quantity of an item is Available-To-
Purchase at a quoted price by a deadline date/time, that is a
business process. The Supplier enters a description of the offer
inside its DMS, handling the given quantity as a tentative update
of quantity, subject to business rules. A purchase request
received by the deadline date will normally be honored, but there
may be business reasons (e.g., a disaster at a warehouse) why that
can’t occur. In either case, the Purchaser will be notified, and
appropriate business actions will be taken by both Supplier and
Purchaser. The intricate choreography of SCM is designed to
handle supply processing, where there are multiple process steps
and exception event handling. Such tentative approaches are also
suggested by Helland [8].
In Data Management Systems using replication, decisions may be
made using subjective consistency (looking at your replica, not
across all replicas). Apologies may be required after replicas
share information. Users may have been given incorrect
information in a consumer transaction (“Your order for the book
has been accepted and will be processed”) because there were
only 5 copies of the book available, and more than 5 were sold.
Pat Helland also points out that a warehouse fire could also delay
or prevent delivery; as we mentioned in principle 2.1, reality is
realer than information systems. In either case, a user may
receive an apology indicating that the book will not be delivered.
But note the tentativity choreography in book processing
introduced by separating Order Entry from Fulfillment; the user
has been told that the book order has been received, but not that it
will be fulfilled. Overbooking book orders still requires an
apology, but the clear separation between Order Entry and
Fulfillment makes the user experience more intelligible. Of
course, this doesn’t help in rare cases such as a warehouse fire or
other disaster where a fulfillment promise may have to be
abrogated.
There are situations where compensation and apologies may not
be possible because of irreversible actions (firing missiles) or
real-time constraints (air traffic systems). Inconsistency may not
be tolerable in such situations. An intriguing question is whether
a single infrastructure can deliver different levels of consistency
for different data and different applications, and what data and
application management techniques are needed to deliver such
capabilities. We discuss this further in section 3.1.

2.10 Solipsists get things done quickly
Each transaction acts based on its local view of the data, without
considering other local transactions

Subjective transactions look at local data without considering
operations at other replicas; we propose solipsistic transactions,
which don’t even consider updates occurring locally. Solipsists
aren’t inconvenienced by pessimistic concurrency control (which
can cause waits, timeouts, deadlocks), nor by optimistic
concurrency control (which can cause rollback if has data
changed since it was read). Instead, solipsistic transactions
commit and expect system infrastructure to handle conflicts
within a replica, just as that infrastructure handles conflicts across
replicas.
Local conflict-resolution may involve composing changes (e.g.,
using commutative operations, design change integration, or last-
update wins), and taking the same compensatory actions (which
might include apologies) that would occur if conflicting
transactions had addressed different replicas. The crux of this
principle is to have a single “end-to-end” conflict-handling
mechanism that deals with single and multiple replicas, rather
than having different mechanisms for each case.
For focused transactions (principle 2.5) that only update one
entity, conflict-resolution may be easier than with a less focused
transaction that updates multiple entities. For transactions that
generated events, conflict-resolution compensation mechanisms
may need to generate other events to compensate for them based
on transactional data, metadata and introspection. Transactions
that insert only (principle 2.7) and record what they are doing, not
just consequences (principle 2.8) are particularly amenable to
automated conflict-resolution infrastructure.

2.11 The show must go on
Business services should always be available.
This is the most important principle; the other principles
introduced in this paper help enable it. Processes, processors,
disks and network connections may fail; we know that they will
sometimes fail. But business transactions and processes should
always work, even if/when data is not fully “consistent”—not up-
to-date, not completely self-consistent, not reflected in secondary
data, and even (sometimes) not what was previously promised.

3. IMPLEMENTATION AND USER
EXPERIENCE
The previous section listed a series of principles, but made
periodic reference to aspects of implementation and user
experience. In this section, we summarize those aspects briefly,
and talk about additional considerations in both areas.

3.1 Implementation considerations
Process steps are connected via events/messages, which may be
reliable, or transactional; at-least-once delivery and idempotence
can be used with unreliable messaging. Each process step
contains at most one transaction, which updates only one entity
and generates events. Scheduling for process steps (which may be
based on a series of events, not just a single event) is handled by
system infrastructure. System infrastructure should be scale-
aware code [8], independent of specific applications, but how it
behaves for a particular application certainly can depend on the
characteristics of the application, its transaction and its data.
This approach supports scalability, parallelism (locally and across
partitions and replicas) and fast response times for users, but

CIDR Perspectives 2009

requires a programming model suitable for infrastructure-based
conflict-resolution across multiple applications that use the same
entities. Moreover, new applications get added and applications
get changed and extended, so a timelessly sustainable application
environment must provide both dynamic schema migration and
dynamic application migration capabilities, with continuous
availability. The infrastructure environment must proscribe
admissible changes to schemas and applications; not all changes
will be supportable, and only supportable changes can be
permitted.
Specifications don’t preclude performance optimization by
deployment and runtime infrastructure. Infrastructure could
collapse steps vertically, turning multiple process steps in the
same process into a single sequential process step, and perhaps
multiple transactions into a single transaction. Infrastructure
could also collapse process steps horizontally, turning multiple
transactions for different processes into a single transaction. In
either case, that single transaction would have to address local
data only. Having small transaction granularity in the
programming model allows smart implementations to “right-size”
execution to optimize throughput, or trade off throughput for
response time.
Because data is (mostly) insert-only and operations (not just
consequences) are stored, there can be enough information to
handle conflict-resolution, both for solipsistic local transactions
and across subjective replicas. One approach we are considering
[Hasso Plattner, private communication] involves storing events
when they arrive, with inserts treated as events, in a log-structured
database (LSDB). What applications view as the current state of
the database would be a rollup aggregation of the contents of the
LSDB, in the same way that rollforward using a log is an
aggregation function. This can be implemented efficiently using
main memory database techniques.
Since strong consistency is sometimes necessary for certain data
and applications, in section 2.9 we asked whether a “single
infrastructure”—an ambiguous term--can deliver different levels
of inconsistency for different applications, and what data and
application management techniques are needed to deliver such
capabilities.
For applications that address the data with different consistency
requirements, multiple replicas are required; different replicas
may provide different consistencies. For example, a master-slave
approach where the master copy handles all updates
unapologetically but slaves may have to apologize and
compensate might address needs for variegated consistency
requirements. We’ve already seen that subjective Order Entry
operations might allow inconsistencies, while Fulfillment might
be handled by a master database that provides stronger
consistency guarantees. Strong consistency can also be provided
using logical locks with coarse granularity, a technique SAP
systems use to avoid database bottlenecks [5]. For read-only
warehousing requirements, periodic extract from an OLTP system
may suffice. But at some level, these approaches integrate
separate systems, and at the systems level do not constitute a
unified single infrastructure.
Reference data (such as metadata) that seldom changes or is
versioned may be managed differently than frequently updated
data, and many systems understand that these types of data are
different and address them individually. But once again we have

two separate technologies that have been integrated, rather than a
single infrastructure addressing disparate requirements.

3.2 User experience considerations
End-user requirements include ease-of-use (not addressed here),
fast response times and no surprises. When users perform
business operations, they expect that the effects of those
operations are durable and visible. There may be subsequent
applications performed by other users that affect the same (or
related) data, but there are expected semantics for the composition
of those subsequent effects with what the users sees as “my”
effects. But the nature of that composition is tricky to capture for
updatable data; if I’ve changed inventory to 15, I recognize that
inventory may be 8 or 30 the next time that I examine it. On the
other hand, if I’m looking at operations on a bank account, my
balance may change, but individual deposits and withdrawals are
visible and durable.
So insert-only data (in which balance is an aggregate of deposits
and withdrawals) helps deliver a coherent user experience. Even
for tentative changes, which might not become permanent (e.g.,
because a purchaser does not accept an offer from a supplier), the
tentative change is visible and durable, but might be marked as
obsolete.
Apologies can be difficult for users to address, and some
apologies will upset customers, which is not good business, either
for a company or for the business application provider. (Sorry
that I lost your billion dollar transaction. Sorry that I didn’t
record your legally necessary business action. Sorry that you’ve
arrived for your vacation, but your hotel reservation was lost
because we gave it to someone else.) Building scalable systems
that provide good user experience requires defining not only data
schemas (with history), application methodologies and systems
infrastructure; it also requires defining User Experience so that
apologies are comprehensible (and preferably rare). One common
approach is to decompose processes into multiple steps, as with
the separation of Order Entry, which is visible and durable, from
Fulfillment, which may involve races with Fulfillment for other
users, and may be impacted by real-world phenomena such as
warehouse fires.
Apologies can also be avoided by providing stronger consistency
guarantees (trading off other aspects of CAP [1]). Note also that
response time for users may degrade due to strong consistency,
e.g., when a backup system must receive transaction records
before a transaction commits, or when a replica quorum must
acknowledge receiving writes before they complete. Hence
avoiding apologies can impair a different aspect of user
experience, response time.
In section 3.1, we discussed the possibility of having “single
infrastructures” than can deliver different levels of consistency
and inconsistency. That’s a user experience as well as an
infrastructure issue; a system that takes business application
requirements and automatically delivers appropriate consistency
levels based on metadata (describing data, applications, customer
expectations, etc.) would be a significant technical and business
achievement.
Finally, we believe that knowing your data, your applications and
your users allows significant specializations in the design of
system infrastructures providing appropriate user experience,
including throughput and response time [5].

CIDR Perspectives 2009

4. CONCLUSION
Some of the inconsistency principles we presented may be
controversial; we don’t claim that they are universally applicable-
-consistency is a critical consideration for certain business
applications. In this paper, we follow the prescient Emerson by
arguing against a foolish (that is, an inappropriate, unnecessary,
overly expensive or practically unattainable) consistency.
The papers we reference on internet-scale distributed systems
have strongly influenced our views of requirements for high
performance and highly parallel scalable data management
systems. But experience with SAP applications has also strongly
influenced us, and we believe that these inconsistency principles
are often sound data management principles for business
applications and processes using traditional databases. We
welcome feedback and discussion with other researchers
exploring related ideas.
This document contains research concepts from SAP®, and is not
intended to be binding upon SAP for any particular course of
business, product strategy, and/or development. SAP assumes no
responsibility for errors or omissions in this document. SAP does
not warrant the accuracy or completeness of the information, text,
graphics, links, or other items contained within this material.

5. ACKNOWLEDGMENTS
We’d like to thank many of our colleagues at SAP for insightful
discussions relating to topics in this paper, particularly Thomas
Heinzel, Hasso Plattner and Heinz Roggenkemper. Discussions
by one of the authors with Pat Helland when he was completing
reference [9] about object ACID (Associative, Commutative,
Idempotent and Distributed) properties also helped motivate
writing about data management properties of SAP applications.

6. REFERENCES
[1] Brewer, E. 2000. Towards robust distributed systems

(abstract), In Proceedings of the 19th annual ACM

symposium on Principles of distributed computing, p.7,
DOI= http://doi.acm.org/10.1145/343477.343502

[2] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R.
E. 2006. Bigtable: a distributed storage system for structured
data. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation.

[3] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., Vogels, W. 2007. Dynamo: Amazon's highly available
key-value store. In Proceedings of 21st ACM SIGOPS
Symposium on Operating Systems Principles, DOI=
http://doi.acm.org/10.1145/1294261.1294281

[4] Emerson, R.W. 1841. Self-Reliance. Published in Essays —
First Series

[5] Finkelstein, S., Brendle, R., Hirsch, R., Jacobs, D., and
Marquand, U. 2008. The SAP Transaction Model: Know
Your Applications, presented (but not published) at ACM
SIGMOD 2008 Product Day, Vancouver Canada.

[6] Gilbert, S., and Lynch, N. 2002. Brewer's conjecture and the
feasibility of consistent, available, partition-tolerant web
services. In ACM SIGACT News 33(2), DOI=
http://doi.acm.org/10.1145/564585.564601

[7] Gray, J. and Reuter, A. 1993. Transaction Processing:
Concepts and Techniques, Morgan Kaufmann, San Mateo,
CA.

[8] Helland, P. 2007. Life Beyond Distributed Transactions, An
Apostate’s Opinion, In Proc. CIDR, 2007.

[9] Helland, P. 2008. The Irresistible Forces Meet the Movable
Objects, Microsoft TechEd North America 2008.

[10] Vogels, W. 2008. Eventually Consistent, In ACM Queue,
6(6), p. 14, DOI=
http://doi.acm.org/10.1145/1466443.1466448

http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/1294261.1294281
http://www.gutenberg.org/ebooks/2944
http://www.gutenberg.org/ebooks/2944
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/4035234d-19a8-2b10-508a-f08f61bf5473
https://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/4035234d-19a8-2b10-508a-f08f61bf5473
http://doi.acm.org/10.1145/564585.564601
http://www.cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://www.cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://blogs.msdn.com/pathelland/attachment/7082107.ashx
http://blogs.msdn.com/pathelland/attachment/7082107.ashx
http://doi.acm.org/10.1145/1466443.1466448

	INTRODUCTION
	PRINCIPLES
	Reality is real
	Out-of-order works
	I’ll do it eventually
	Process steps should focus: At most one transaction per pro
	Transactions should focus: Only one entity updated per tran
	Single Object Update per Process Step: SOUPS on
	I remember it well
	Beware the consequences
	I think I can
	Solipsists get things done quickly
	The show must go on

	IMPLEMENTATION AND USER EXPERIENCE
	Implementation considerations
	User experience considerations

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

