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ABSTRACT 
Data consistency is very desirable because strong semantic 
properties make it easier to write correct programs that perform as 
users expect.  However, there are good reasons why consistency 
may have to be weakened to achieve other business goals.  In this 
CIDR 2009 Perspectives paper, we present real-world reasons 
inconsistency may be necessary, offer principles for managing 
inconsistency coherently, and describe implementation 
approaches we are investigating for sustainably scalable systems 
that offer comprehensible user experiences despite inconsistency. 

Categories and Subject Descriptors 
H.2.4 [Systems]: Concurrency, Distributed databases, Object-
oriented databases, Parallel databases, Query processing, Rule-
based databases, Transaction processing.  H.2.5 [Database 
Administration]: Logging and recovery.  H.2.8 [Database 
applications].  J.1 [Administrative data processing]: Business, 
Financial, Manufacturing.  D.2.11 [Software Architectures]: 
Data abstraction, Patterns.  D.1.3 [Concurrent Programming]:  
Distributed programming, Parallel programming. 

General Terms 
Design, Management, Performance, Reliability. 

Keywords 
Consistency, data management, database, transaction processing, 
availability, manageability, scalability, business applications, 
business objects, distributed systems, parallelism, concurrency. 

1. INTRODUCTION 
"A foolish consistency is the hobgoblin of little minds." 
Ralph Waldo Emerson, “Self-Reliance”, 1841 [4] 
A database, or more generally a data management system (DMS), 
is Consistent if its state satisfies given integrity constraints.   A 
transaction is Consistent if its actions on consistent DMS states 
always result in consistent states.  Atomicity (all-or-nothing), 
Isolation (transactions behave as if executed in serial order) and 
Durability (committed changes are never lost), ensure that 
execution of consistent transactions preserves DMS consistency 
[7]. Real-world interactions associated with transactions are 
outside of the DMS, but consistent transactions “normally” 
behave correctly with respect to these interactions as well, e.g.,  
cash is dispensed only after the cash withdrawal has been posted 
to your bank account. 
For distributed systems with replication, one could define 
consistency very loosely, with weak integrity constraints, or very 
tightly, based on single-copy serializability.  But weak constraints 
lose data semantics, while tight constraints eliminate some of the 
advantages of replication (latency, as well as availability and 
partition-tolerance, per CAP Principle/Theorem tradeoffs) [1, 6].   
Except when there are uncompensatable and unapologizable real-
time consequences, it is more useful to speak of Subjective 
Consistency (performing correct transactions based on the local 
data state) and Eventual Consistency (convergence to equivalent 
states at all replicas if there were no further transactions) [3, 9, 
10]. 
Internet-scale data management systems [2,3] must achieve very 
high levels of scalability and availability, and manage 
inconsistent replicas in principled ways.  There are principles for 
managing inconsistency of partitioned/replicated data that are 
application-dependent, and are followed in different ways [2, 3] in 
internet-scale data management systems.  However, principles for 
managing inconsistency are also relevant for more traditional 
enterprise applications and databases.  This paper describes some 
of those principles, with particular reference to experiences at 
SAP, and describes some implementation approaches we are 
investigating for sustainably scalable systems that offer 
comprehensible user experiences despite inconsistency.   

This article is published under a Creative Commons License Agreement 
(http://creativecommons.org/licenses/by/3.0/).  
You may copy, distribute, display, and perform the work, make derivative 
works and make commercial use of the work, but you must attribute the work 
to the author and CIDR 2009.  
4th Biennial Conference on Innovative Data Systems Research (CIDR)  
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2. PRINCIPLES 
This section includes 11 principles for managing DMS 
inconsistency.  Some of these principles are not directly about 
consistency, but they have consequences for consistency due to 
the CAP Principle.   We hope to generate a vigorous discussion 
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about associated tradeoffs across different schemes for managing 
replication for availability, such as active systems with 
asynchronous commits to backups, active systems with 
synchronous commits to backups, active/active replication with 
subjective/eventual consistency, and replication with strong 
consistency. 
We do not believe that inconsistency is appropriate for all 
applications and all data, and we discuss user experience and 
implementation issues for mixed systems (with different 
consistency levels) in section 3. 

2.1 Reality is real 
Business data may not always correctly reflect the state of the 
world or the business. 
In organizations, people don’t have perfect information; the same 
is true for systems.   There is always some delay before entry of 
information (or before processing of state-changing requests) 
from devices, humans, partners or other parts of the company.  
Even without distributed replication, systems must embrace delay 
as a source of Subjective Consistency [9] that describes system 
knowledge of reality, rather than reality itself.  A DMS should 
manage latency, incompleteness and even certain kinds of 
unsoundness, rather than acting as if they don’t exist.  For 
example, a business may permit inventory levels to go negative if 
a packager knows more about current inventory than the system 
does.  Of course uncontrolled integrity constraint violations are 
problematic; the challenge is to have mechanisms that handle the 
consequences of inconsistency.  For negative inventories, the 
system should track the history that resulted in negative inventory 
levels, and eventually account for the discrepancy. See principles 
2.2 and 2.9 for related discussions.  

2.2 Out-of-order works 
Transactions and events sometimes happen in unexpected 
sequences, temporarily violating integrity constraints. 
One of the simplest constraints is referential integrity, which 
requires that child entities have valid parent entities.  Referential 
integrity may be handled via a foreign key (reference to a 
business partner requires existence of the partner) or via a 
hierarchical data structure (line items must appear in a purchase 
order).  In practice, data might not be received (or even 
determined) before data that references it.  Data generally enters 
the enterprise IT infrastructure through front-end applications 
such as Customer Relationship Management (CRM).  When 
entered, it is often incomplete, and since there is little 
coordination between the users who enter data, often inconsistent.  
Over time, as users collaborate and business processes are carried 
out, the data moves towards backend applications and references 
become more complete.  Leads become qualified and turn into 
Opportunities, which are won and become Orders, which are 
processed by demand planning, which causes production 
scheduling, which results in logistics.  
Especially in the early stages of the data lifecycle, the DMS 
should not bureaucratically prevent data entry.  Instead, a 
transaction should be able to enter what’s known “now”.  For 
example, Opportunities may refer to customers not yet entered.  If 
integrity constraints are violated, warnings can be given, 
alerts/events generated, and new process steps scheduled.  The 
constraint still exists, but its violations are handled, rather than 

prevented, so an “inconsistent” business state that would have 
been regarded as unsound has been transformed into a system-
managed exception. 

2.3 I’ll do it eventually 
Secondary data need not be updated with primary data. 
Primary data gets inserted (or perhaps updated) during 
transactions.  Other actions must reliably occur eventually, but 
may be deferred, not occurring during the original transaction.  
Examples of such secondary data are aggregates (such as invoice 
total or quantity on hand) which might be bottlenecks if updated 
within a transaction, materialized views and OLAP/data 
warehouses.  Eventual update implies that such secondary data 
will not always be consistent with the primary data.  Helland 
explains why inconsistency of secondary indexes is necessary for 
highly scalable systems [8], but as he emphasizes (and we’ll see 
in principle 2.5), his point applies beyond secondary indexes. 
SAP has utilized similar techniques for many years to avoid 
database bottlenecks [5].  To reduce user wait times, the SAP 
transaction model allows a transaction to complete when a 
descriptor listing pending actions has been committed to the 
database; the actions themselves are performed after control has 
returned to the user.  Logical locks are held until the actions have 
completed, but these prevent access by other users, not the user 
who performed the transaction.  If that user immediately queries 
the state of the system, the result of the transaction may not yet be 
visible.  Applications using asynchronous updates must be 
designed to tolerate such inconsistency.  (The SAP model also 
supports synchronous updates at commit; that increases response 
time but avoids this inconsistency.)  
Additional sources of inconsistencies due to deferred updates 
(which we think of as principled procrastination) appear in 
subsequent principles. 

2.4 Process steps should focus:  At most one 
transaction per process step 
Processes should be made up of process steps, connected by 
events.  A process step should contain (at most) one transaction, 
which commits (or at least, attempts to commit) at the end of the 
step. 
A process, such as transferring an employee from one department 
to another, should be broken down into a series of steps, such as 
reassigning the employee’s business responsibilities to other 
employees, that are connected by events.  Detailed considerations 
of the nature of such events, which can be reliable, transactional, 
or ordered, are beyond the scope of this paper, but aspects are 
addressed by reliable message queue specifications and products, 
such as the Java Message Service.   For unreliable messaging, at-
least-once delivery can be used with idempotence [8]. 
Identifying process steps with transactions simplifies both the 
programming model and system management.  Including at most 
one transaction in a process step ensures that the process step can 
never partially complete its work; it either completes its 
transaction or it doesn’t. And since the transaction boundary is the 
end of the process step, there is no application-specified work 
after transaction commit in a process step, so the transaction 
either committed or it didn’t.  (System infrastructure will have to 
determine which if there’s a failure.) A committed transaction 
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may enqueue events that result in additional process steps, 
perhaps specified by application code in the transaction or by 
system infrastructure.  Transaction failures may enqueue post-
rollback actions but they must be non-transactional and 
infrastructure-generated, since the transaction failed and the 
process step ends at the transaction boundary.  Process and 
processor failures may mean that such post-rollback actions 
cannot be generated locally, so retry, idempotence and other 
approaches are necessary. 
Not all actions in a process step can (or should) be rolled back.  
There may be non-transactional writes, e.g., for auditing purposes, 
which should not be rolled back even if a transaction fails.  There 
may be indirect effects, such as starting or stopping a resource, 
that must be independently reversed by the system at some 
appropriate time.  Finally, there may be real-world actions taken 
by a process step, typically post-commit because they won’t be 
rolled back if transaction fails.  (Compensation for real-world 
actions is discussed in principle 2.9.) 

2.5 Transactions should focus:  Only one 
entity updated per transaction 
Whenever possible, update only a single (frequently hierarchical) 
entity within a transaction. If updates must involve (or be 
propagated to) other entities, do so using reliable/transactional 
queues and process management/eventing techniques. 
An entity is a business object, frequently hierarchical, such as an 
order and its lineitems.  The value of single entity transactions is 
clearest when they involve data associated with multiple business 
partners, or even multiple organizational systems running separate 
databases within the same company.  When entities from two 
different organizational units are accessed in the same transaction, 
a distributed (two-phase commit) transaction is required, which 
impacts performance and availability.  In the employee transfer 
example, there is no need to reassign responsibilities across the 
two departments in the same transaction. 
A single organization may partition data by entity type and key, 
where partitions are managed as separate “serialization units” 
with separate logs.  Entity location is determined dynamically, 
e.g., by key range partitioning or with a dynamic hash table.   
Following the focused transaction principle avoids commits 
across multiple units, which might be distributed commits.  
Helland proposes that highly scalable systems use single entity 
transactions for this reason [8]. 
Even in single database systems, the focused transaction principle 
may be valuable because it shortens and simplifies transactions, 
which avoids conflicts, simplifies compensation (principle 2.9), 
and promotes parallelism and locality.  Designing an application 
from the beginning so that its parts are loosely coupled supports 
flexible distributed deployment.  Ideally, a developer should rely 
on tight coupling and sequential execution only when it is 
required for correctness.  Of course, good implementations should 
transparently manage clever performance optimizations as 
discussed in section 3.. 

2.6 Single Object Update per Process Step:  
SOUPS on 
Each Process Step consists of (at most) one transaction, updating 
exactly one data object, possibly also generating reliable and/or 
transactional events 
This principle is a combination of principles 2.4 and 2.5, Focused 
Process Steps and Focused Transactions.  It’s called out as a 
separate principle because the combined focus dramatically 
simplifies the programming model and makes local, highly 
parallel implementation feasible.  (Note that enqueue and dequeue 
operations on event queues, including transactional queues, are 
always local operations, never distributed transactions, even when 
delivery is to a remote system.) 
Of course, the cost of SOUPS is that applications must tolerate 
inconsistencies, and the DMS infrastructure must handle 
inconsistencies.  But since we must accept subjective and 
eventual consistency due to CAP, and there are other sources of 
inconsistency, an intelligent system design choice is to embrace 
inconsistency management in a principled way whenever 
possible. 

2.7 I remember it well 
Handle (almost all) updates as inserts of new data, and handle 
deletes by marking data as deleted, rather than actually deleting. 
SAP handles many updates in this “insert-only” way due to 
regulatory requirements.  But this principle can also help with 
versioning, consistency within a transaction, concurrency control, 
and, because past descriptions are available, eventual consistency.  
In the inventory example of principle 2.1, the historical trace 
might be used to identify a packer as the source of the 
inconsistency.  SAP uses a commutative update strategy 
(“deltas”) and a merge update capability that relate to eventual 
consistency within a single database system.  OLTP transactions 
should not refer to versions of data explicitly; instead, the DMS 
should automatically use the appropriate data version. 
In practice, unlimited data growth may be an issue, so the DMS 
should provide data summarization and archival functionality, 
while still addressing regulatory requirements and eventual 
consistency. 

2.8 Beware the consequences 
Data written in transactions should describe what the 
transactions do, not just transaction consequences.  Business 
processes should handle conflicts or anomalies either 
immediately (conflict-resolution) or in a deferred mode (data 
cleansing). 
Describing operations, rather than (just) their consequences, helps 
support eventual consistency assuming that data is inserted rather 
than updated (per the previous principle).   For example, entering 
a banking withdrawal means entering the withdrawal, not just the 
remaining balance.  The balance may be updated in the same 
transaction (if all account transactions are part of an account 
entity that also includes balance), or perhaps in a deferred 
transaction (if balance is handled as an aggregate).  Note that how 
transactions read account balance may be affected by this choice.  
Operations may be described at a high logical level, with 
consequences happening later; SAP follows this approach when 
latency is an issue.  This principle has a major impact on schema 
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and (combined with other principles, such as non-determinism 
and deferred update) process design, allowing conflicts to be 
handled either immediately, via event-handling and process 
management, or by a deferred cleansing process (which may itself 
generate events reflecting its actions).  It is particularly important 
for operations on occasionally disconnected devices such as 
mobile phones. 

2.9 I think I can 
Process steps and user experience should be designed to support 
tentative operations and (what Pat Helland [9] aptly calls) 
apology-oriented computing, where compensation is handled 
using tentative operations and apologies. 
In SAP’s Supply Chain Management (SCM), when one business 
informs another than a given quantity of an item is Available-To-
Purchase at a quoted price by a deadline date/time, that is a 
business process.  The Supplier enters a description of the offer 
inside its DMS, handling the given quantity as a tentative update 
of quantity, subject to business rules.  A purchase request 
received by the deadline date will normally be honored, but there 
may be business reasons (e.g., a disaster at a warehouse) why that 
can’t occur.  In either case, the Purchaser will be notified, and 
appropriate business actions will be taken by both Supplier and 
Purchaser.  The intricate choreography of SCM is designed to 
handle supply processing, where there are multiple process steps 
and exception event handling.   Such tentative approaches are also 
suggested by Helland [8]. 
In Data Management Systems using replication, decisions may be 
made using subjective consistency (looking at your replica, not 
across all replicas).  Apologies may be required after replicas 
share information.  Users may have been given incorrect 
information in a consumer transaction (“Your order for the book 
has been accepted and will be processed”) because there were 
only 5 copies of the book available, and more than 5 were sold.  
Pat Helland also points out that a warehouse fire could also delay 
or prevent delivery; as we mentioned in principle 2.1, reality is 
realer than information systems.  In either case, a user may 
receive an apology indicating that the book will not be delivered.  
But note the tentativity choreography in book processing 
introduced by separating Order Entry from Fulfillment; the user 
has been told that the book order has been received, but not that it 
will be fulfilled.  Overbooking book orders still requires an 
apology, but the clear separation between Order Entry and 
Fulfillment makes the user experience more intelligible.  Of 
course, this doesn’t help in rare cases such as a warehouse fire or 
other disaster where a fulfillment promise may have to be 
abrogated. 
There are situations where compensation and apologies may not 
be possible because of irreversible actions (firing missiles) or 
real-time constraints (air traffic systems).  Inconsistency may not 
be tolerable in such situations.  An intriguing question is whether 
a single infrastructure can deliver different levels of consistency 
for different data and different applications, and what data and 
application management techniques are needed to deliver such 
capabilities.  We discuss this further in section 3.1. 

2.10 Solipsists get things done quickly 
Each transaction acts based on its local view of the data, without 
considering other local transactions 

Subjective transactions look at local data without considering 
operations at other replicas; we propose solipsistic transactions, 
which don’t even consider updates occurring locally.  Solipsists 
aren’t inconvenienced by pessimistic concurrency control (which 
can cause waits, timeouts, deadlocks), nor by optimistic 
concurrency control (which can cause rollback if has data 
changed since it was read).  Instead, solipsistic transactions 
commit and expect system infrastructure to handle conflicts 
within a replica, just as that infrastructure handles conflicts across 
replicas.   
Local conflict-resolution may involve composing changes (e.g., 
using commutative operations, design change integration, or last-
update wins), and taking the same compensatory actions (which 
might include apologies) that would occur if conflicting 
transactions had addressed different replicas.  The crux of this 
principle is to have a single “end-to-end” conflict-handling 
mechanism that deals with single and multiple replicas, rather 
than having different mechanisms for each case. 
For focused transactions (principle 2.5) that only update one 
entity, conflict-resolution may be easier than with a less focused 
transaction that updates multiple entities.  For transactions that 
generated events, conflict-resolution compensation mechanisms 
may need to generate other events to compensate for them based 
on transactional data, metadata and introspection.   Transactions 
that insert only (principle 2.7) and record what they are doing, not 
just consequences (principle 2.8) are particularly amenable to 
automated conflict-resolution infrastructure. 

2.11 The show must go on 
Business services should always be available. 
This is the most important principle; the other principles 
introduced in this paper help enable it.  Processes, processors, 
disks and network connections may fail; we know that they will 
sometimes fail.  But business transactions and processes should 
always work, even if/when data is not fully “consistent”—not up-
to-date, not completely self-consistent, not reflected in secondary 
data, and even (sometimes) not what was previously promised. 

3. IMPLEMENTATION AND USER 
EXPERIENCE 
The previous section listed a series of principles, but made 
periodic reference to aspects of implementation and user 
experience.  In this section, we summarize those aspects briefly, 
and talk about additional considerations in both areas. 

3.1 Implementation considerations 
Process steps are connected via events/messages, which may be 
reliable, or transactional; at-least-once delivery and idempotence 
can be used with unreliable messaging.  Each process step 
contains at most one transaction, which updates only one entity 
and generates events. Scheduling for process steps (which may be 
based on a series of events, not just a single event) is handled by 
system infrastructure.  System infrastructure should be scale-
aware code [8], independent of specific applications, but how it 
behaves for a particular application certainly can depend on the 
characteristics of the application, its transaction and its data. 
This approach supports scalability, parallelism (locally and across 
partitions and replicas) and fast response times for users, but 
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requires a programming model suitable for infrastructure-based 
conflict-resolution across multiple applications that use the same 
entities.  Moreover, new applications get added and applications 
get changed and extended, so a timelessly sustainable application 
environment must provide both dynamic schema migration and 
dynamic application migration capabilities, with continuous 
availability. The infrastructure environment must proscribe 
admissible changes to schemas and applications; not all changes 
will be supportable, and only supportable changes can be 
permitted. 
Specifications don’t preclude performance optimization by 
deployment and runtime infrastructure.  Infrastructure could 
collapse steps vertically, turning multiple process steps in the 
same process into a single sequential process step, and perhaps 
multiple transactions into a single transaction.  Infrastructure 
could also collapse process steps horizontally, turning multiple 
transactions for different processes into a single transaction.  In 
either case, that single transaction would have to address local 
data only.  Having small transaction granularity in the 
programming model allows smart implementations to “right-size” 
execution to optimize throughput, or trade off throughput for 
response time. 
Because data is (mostly) insert-only and operations (not just 
consequences) are stored, there can be enough information to 
handle conflict-resolution, both for solipsistic local transactions 
and across subjective replicas.  One approach we are considering 
[Hasso Plattner, private communication] involves storing events 
when they arrive, with inserts treated as events, in a log-structured 
database (LSDB).  What applications view as the current state of 
the database would be a rollup aggregation of the contents of the 
LSDB, in the same way that rollforward using a log is an 
aggregation function.  This can be implemented efficiently using 
main memory database techniques. 
Since strong consistency is sometimes necessary for certain data 
and applications, in section 2.9 we asked whether a “single 
infrastructure”—an ambiguous term--can deliver different levels 
of inconsistency for different applications, and what data and 
application management techniques are needed to deliver such 
capabilities.   
For applications that address the data with different consistency 
requirements, multiple replicas are required; different replicas 
may provide different consistencies.  For example, a master-slave 
approach where the master copy handles all updates 
unapologetically but slaves may have to apologize and 
compensate might address needs for variegated consistency 
requirements.  We’ve already seen that subjective Order Entry 
operations might allow inconsistencies, while Fulfillment might 
be handled by a master database that provides stronger 
consistency guarantees.  Strong consistency can also be provided 
using logical locks with coarse granularity, a technique SAP 
systems use to avoid database bottlenecks [5].  For read-only 
warehousing requirements, periodic extract from an OLTP system 
may suffice.  But at some level, these approaches integrate 
separate systems, and at the systems level do not constitute a 
unified single infrastructure. 
Reference data (such as metadata) that seldom changes or is 
versioned may be managed differently than frequently updated 
data, and many systems understand that these types of data are 
different and address them individually.  But once again we have 

two separate technologies that have been integrated, rather than a 
single infrastructure addressing disparate requirements. 

3.2 User experience considerations 
End-user requirements include ease-of-use (not addressed here), 
fast response times and no surprises.  When users perform 
business operations, they expect that the effects of those 
operations are durable and visible.  There may be subsequent 
applications performed by other users that affect the same (or 
related) data, but there are expected semantics for the composition 
of those subsequent effects with what the users sees as “my” 
effects.  But the nature of that composition is tricky to capture for 
updatable data; if I’ve changed inventory to 15, I recognize that 
inventory may be 8 or 30 the next time that I examine it. On the 
other hand, if I’m looking at operations on a bank account, my 
balance may change, but individual deposits and withdrawals are 
visible and durable. 
So insert-only data (in which balance is an aggregate of deposits 
and withdrawals) helps deliver a coherent user experience.  Even 
for tentative changes, which might not become permanent (e.g., 
because a purchaser does not accept an offer from a supplier), the 
tentative change is visible and durable, but might be marked as 
obsolete.  
Apologies can be difficult for users to address, and some 
apologies will upset customers, which is not good business, either 
for a company or for the business application provider.  (Sorry 
that I lost your billion dollar transaction.  Sorry that I didn’t 
record your legally necessary business action.  Sorry that you’ve 
arrived for your vacation, but your hotel reservation was lost 
because we gave it to someone else.)  Building scalable systems  
that provide good user experience requires defining not only data 
schemas (with history), application methodologies and systems 
infrastructure; it also requires defining User Experience so that 
apologies are comprehensible (and preferably rare).  One common 
approach is to decompose processes into multiple steps, as with 
the separation of Order Entry, which is visible and durable, from 
Fulfillment, which may involve races with Fulfillment for other 
users, and may be impacted by real-world phenomena such as 
warehouse fires.   
Apologies can also be avoided by providing stronger consistency 
guarantees (trading off other aspects of CAP [1]).  Note also that 
response time for users may degrade due to strong consistency, 
e.g., when a backup system must receive transaction records 
before a transaction commits, or when a replica quorum must 
acknowledge receiving writes before they complete.  Hence 
avoiding apologies can impair a different aspect of user 
experience, response time. 
In section 3.1, we discussed the possibility of having “single 
infrastructures” than can deliver different levels of consistency 
and inconsistency.  That’s a user experience as well as an 
infrastructure issue; a system that takes business application 
requirements and automatically delivers appropriate consistency 
levels based on metadata (describing data, applications, customer 
expectations, etc.) would be a significant technical and business 
achievement. 
Finally, we believe that knowing your data, your applications and 
your users allows significant specializations in the design of 
system infrastructures providing appropriate user experience, 
including throughput and response time [5]. 
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4. CONCLUSION 
Some of the inconsistency principles we presented may be 
controversial; we don’t claim that they are universally applicable-
-consistency is a critical consideration for certain business 
applications.  In this paper, we follow the prescient Emerson by 
arguing against a foolish (that is, an inappropriate, unnecessary, 
overly expensive or practically unattainable) consistency. 
The papers we reference on internet-scale distributed systems 
have strongly influenced our views of requirements for high 
performance and highly parallel scalable data management 
systems.  But experience with SAP applications has also strongly 
influenced us, and we believe that these inconsistency principles 
are often sound data management principles for business 
applications and processes using traditional databases.  We 
welcome feedback and discussion with other researchers 
exploring related ideas. 
This document contains research concepts from SAP®, and is not 
intended to be binding upon SAP for any particular course of 
business, product strategy, and/or development.  SAP assumes no 
responsibility for errors or omissions in this document.  SAP does 
not warrant the accuracy or completeness of the information, text, 
graphics, links, or other items contained within this material. 
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