
 

CIDR Perspectives 2009 

DBMSs Should Talk Back Too

Yannis Ioannidis
University of Athens

Athens, Hellas (Greece)

yannis@di.uoa.gr

Alkis Simitsis
HP Labs

Palo Alto, California, USA
alkis@hp.com

ABSTRACT
Natural language user interfaces to database systems have
been studied for several decades now. They have mainly fo-
cused on parsing and interpreting natural language queries
to generate them in a formal database language. We envi-
sion the reverse functionality, where the system would be
able to take the internal result of that translation, say in
SQL form, translate it back into natural language, and show
it to the initiator of the query for verification. Likewise, in-
formation extraction has received considerable attention in
the past ten years or so, identifying structured information
in free text so that it may then be stored appropriately and
queried. Validation of the records stored with a backward
translation into text would again be very powerful. Verifi-
cation and validation of query and data input of a database
system correspond to just one example of the many impor-
tant applications that would benefit greatly from having ma-
ture techniques for translating such database constructs into
free-flowing text.

The problem appears to be deceivingly simple, as there are
no ambiguities or other complications in interpreting inter-
nal database elements, so initially a straightforward trans-
lation appears adequate. Reality teaches us quite the op-
posite, however, as the resulting text should be expressive,
i.e., accurate in capturing the underlying queries or data,
and effective, i.e., allowing fast and unique interpretation of
them. Achieving both of these qualities is very difficult and
raises several technical challenges that need to be addressed.

In this paper, we first expose the reader to several sit-
uations and applications that need translation into natural
language, thereby, motivating the problem. We then outline,
by example, the research problems that need to be solved,
separately for data translations and query translations.

1. INTRODUCTION
The role of a database management system (DBMS) in-

stalled in a particular environment is to connect its users
with its underlying content. Natural language (NL) is of-

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA

ten an important tool on both ends of this connection: on
one hand, users may interact with the system in natural
language, while on the other, the original database content
may be in natural language. Nevertheless, for high perfor-
mance and effectiveness, DBMSs prefer to deal with struc-
tured elements internally. For this reason, much research has
been conducted on translating natural language queries and
other user interaction expressions to (mostly) SQL, as well
as on translating natural language documents to (mostly re-
lational) database records, by extracting information from
them. The above implies that the external components of
a DBMS environment often talk to the DBMS in natural
language. Shouldn’t the DBMS also be able to talk back in
the same language?

In this paper, we answer this question affirmatively and
describe several applications where such translation of DBMS
internal elements to natural language would be very bene-
ficial. Obtaining such DBMS-generated natural language
constructs, however, is far from trivial, making this largely-
ignored problem a rich field for exploration. Recent studies
advocate for –and motivate to some extent– the need for
such functionality. Automating computer-to-human speech
translation is recognized as one of the seven most important
IT challenge for the next 25 years by Gartner analysts who
examine technologies that will have a broad impact on all
aspects of people’s lives [3]. In this direction, we identify
what we believe are the key research issues that arise and
need to be addressed and some ideas for possible solutions.

Although related to some extent, translating structured
database content into natural-language free text is quite dis-
tinct a problem from translating queries expressed in a for-
mal language into equivalent commands in natural language.
The former is difficult because of the size of the underlying
data, the need to make choices on what to capture in a short
narrative and what to ignore, and the repetitive nature of
some data in the database that need to be factored out and
expressed once in the text generated for effective reading by
the user. The latter is difficult because the size and complex-
ity of a query are essentially arbitrary and have no upper
bounds (whereas the contents of a database necessarily fol-
low the schema structure, which is bounded), thus allowing
generation of rather convoluted queries, whose translation
is a great challenge.

Any attempt towards a solution of the content and/or
the query translation problems must balance out the de-
sired concision and naturality of the generated text with
the complexity of the translation process itself. Our pre-
liminary efforts have been leading to graph representations



 

CIDR Perspectives 2009 

of database contents and queries (different from one to the
other), template phrases associated with parts of the graph,
and then graph traversal in particular directions to compose
the templates found on the way into the final text formation.

In the next section, we explore translations of database
contents, for which our work has progressed further, while
in the section after that, we explore translations of database
queries. We conclude with some additional thoughts on the
whole problem.

2. DATABASE CONTENTS

2.1 Motivation
Consider that one wants to have a textual description of

the contents of a database. If the database is large, it would
make sense to create a textual summary of it, otherwise,
the result can be a description of the full contents. There
are several situations where such translation into natural
language may be useful and desirable. Creating a short
company description for a business plan or a bank-loan ap-
plication or collateral material for marketing are some in-
stances. Given other appropriate schemas, one can imagine
textual descriptions in several other practical cases: a short
description of a museum’s exhibits, possibly customized to
a visitor’s particular interests; a brief history of a patient’s
medical conditions; the highlights of a collection in a digi-
tal library, with a few sentences on the main authors in the
collection; a summary of a theater play in an information
portal; and others.

Whatever holds for whole databases, of course, holds for
query answers as well, especially those with some nontrivial
structure, i.e., entire relational databases, complex objects,
and so on. Textual answers are often preferred by users,
whether experienced or not, as they convey the essence of
the entire query answer in an immediately understandable
way. Moreover, the formation of textual answers becomes
critical in all situations for people with visual impairments
or reading disabilities. Using a speech recognizer [2, 7] to
convert a speech signal to a query and a text-to-speech sys-
tem (TTS) [7] to convert the textual form of the query an-
swer into speech, these people would be given the chance to
interact with information systems, orally pose queries, and
listen to their answers.

Clearly, the idea of translating data into natural language
can be extended to all other forms of primary or derived
data that a database may contain. Database samples, his-
tograms, data distribution approximations are all, in some
sense, small databases and can be summarized textually as
above. Describing the schema itself, its basic entities, re-
lationships, and other conceptual primitives offered by the
model it is based on, is just a special case of a database de-
scription. User profiles maintained by the system for offering
personalized answers, browsing indexes, and other forms of
metadata are amenable to and may benefit from natural-
language translation as well.

2.2 Translating Database Content
Databases can be modeled conveniently as graphs, i.e.,

database schema graphs. The main entities, i.e., relations
and attributes, constitute the nodes of the graph, whereas
the relationships among them, i.e., join and projection edges,
represent the edges of the graph. A projection edge, one for
each attribute node, emanates from its container relation

DIRECTED

mid
did

GENRE

mid
genre

CAST

mid
aid
role

ACTOR

id
name

MOVIES

id
title
year

DIRECTOR

id
name
bdate

blocation

Figure 1: Example database schema

node and ends at the attribute node, representing the pos-
sible projection of the attribute in a query answer. A join
edge emanates from a relation node and ends at another re-
lation node, representing a potential join through a primary
key - foreign key relationship between these relations.

The graphical representation of the database schema fa-
cilitates its translation. In a previous work, we proposed
a template-based method for appropriately annotating the
database schema graph, and then showed how a graph traver-
sal can produce meaningful narratives [9]. The solution sug-
gests that both nodes and edges are annotated by appropri-
ate template labels. These labels are assigned once, e.g.,
by the designer, at an initial design phase, and are instanti-
ated at query time, in order to produce textual descriptions.
Some indicating examples will be shown in the subsequent
paragraphs, as the overall approach is outlined. For the
full-fledged approach, we refer the interested reader to our
previous work [9].

Consider for example a simple schema describing a movie
database (see Fig. 1). For clarity of presentation, only re-
lation nodes and join edges are depicted. (Without loss of
generality we may assume that the names of relations and
attributes are meaningful; otherwise, appropriate aliases can
be used.) For translation purposes, we consider that each
relation has a conceptual and a physical meaning. For exam-
ple, the relation MOV IE conceptually represents “movies”
in real world. The physical meaning of a relation is repre-
sented by the name of one of its attributes, the one that
is most characteristic of the relation tuples; this attribute
is termed the heading attribute. In our example, TITLE
is the heading attribute for the relation MOV IE. Textual
sentences about the relation contents are composed using
templates based on the heading attribute, which is usually
used as the subject of these sentences. For example, when
we want to refer to a movie, practically, we refer to its head-
ing attribute, the title. A template attached as a label to the
projection edge connecting the relation MOV IE to its at-
tribute Y EAR may be “the YEAR of a MOVIE(.TITLE)”.
Similarly, a template attached to a join edge signifies the re-
lationship between the heading attributes of the relations in-
volved; e.g., “the GENRE(.GENRE) of a MOVIE(.TITLE)”.

The translation of a simple database schema graph con-
taining a single relation is performed by composing phrases
based on the templates of the respective projection edges
connecting the relation with its attributes. There are two
alternatives for the translation of a relation’s contents: (a)
create a sentence using only a template based on the head-
ing attribute of the relation or (b) using one or more tem-
plates to construct a sentence that combines the information
stored in the heading attribute and the other attributes of
the relation under consideration. The former results into



 

CIDR Perspectives 2009 

the creation of simple phrases, such as “The director’s name
is Woody Allen”. When we wish to combine information
coming from a single relation with information coming from
other relations, then, such a short version frequently seems
to be adequate (more details are given below). The second
alternative for translating in more detail the content of a sin-
gle relation results into the creation of different clauses, one
per attribute, where inevitably the same subject has to be
repeated many times. To avoid this, we need to create these
clauses using the appropriate templates, and then find com-
mon expressions in the clauses and replace them accordingly.
For example, for a translation of relation DIRECTOR in-
volving the attributes BDATE and BLOCATION , which
store information about the birth date and birth location of
a director, we may use the following templates that connect
these attributes with DNAME, the heading attribute of the
relation (‘+’ indicates concatenation):

DNAME + “ was born” + “ in ” + BLOCATION

DNAME + “ was born” + “ on ” + BDATE

The mechanism for resolving common expressions iden-
tifies DNAME and “ was born” as such and, instead of
creating two different phrases, it creates one that combines
both pieces of data:

DNAME was born in BLOCATION on BDATE

For the translation of the contents of a whole database
containing multiple relations, we need to traverse the en-
tire schema graph. This can be realized in several ways,
e.g, with a simple DFS-like traversal starting from a central
point of interest [9]. During this traversal, three possible
structural patterns on the graph can be found: the unary

pattern (Ri−Rj), the join pattern (
Ri1
Ri2

> Rj), and the split

pattern (Ri <
Rj1
Rj2

). Translating multiple relations requires

a careful and well-tuned combination of the above patterns
for ensuring accurate and meaningful results.

For example, a split pattern Ri <
Rj1
Rj2

may create clauses

where the subject comes from the Ri relation and the rest
(e.g., the predicates) is based on the Rj1 and Rj2 relations.
A possible translation may contain two different template
clauses involving relations Ri – Rj1 and Ri – Rj2 , respec-
tively; an obvious challenge is to avoid repetition of the same
information from Ri. (Observe that this case differs from
the previous example, as in here, the repetition involves the
whole information of Ri and how that merges meaningfully
with the translated content of the other two relations.) An
appealing translation can be created by appropriately merg-
ing the above template clauses for producing a single tem-
plate where the subordinate clauses are combined with a
conjunctive term (e.g., “and”). For instance, the hypotheti-
cal schema DIRECTOR←MOV IES→ACTOR, where for
some reason the translation has to be realized following the
direction of the arrows, constitutes a split pattern. The
straightforward translation would contain one phrase com-
bining only the heading attributes of the involved relations,
and then, phrases translating the content of the each individ-
ual relation. However, instead of getting a vapid narrative
like:

“The movie M1 involves the director D1 and the actor
A1. The director D1 was born in Italy. The actor A1
is Greek.”

it would be more appealing to follow the aforementioned
logic and get the following translation:

“The movie M1 involves the director D1 who was born
in Italy and the actor A1 who is Greek.”

As a more detailed example, assume that we want to
translate contents of a subset of the graph depicted in Fig.
1 that contains relations DIRECTOR and MOV IE (this
case resembles a sequence of unary patterns: DIRECTOR
– DIRECTED – MOV IE). DIRECTED participates in
the translation process (as a node of the database schema
graph) only for connecting the other two; none of its at-
tributes contributes to the result, so it is not taken under
consideration for the construction of the narrative. There-
fore, conceptually, this case resembles a single unary pattern:
DIRECTOR – MOV IE. Consider, for example, that the
contents of this schema subset consist of three movies of di-
rector “Woody Allen”. In this case, translation proceeds as
follows. First, we construct the template clause that corre-
sponds to relation DIRECTOR:

DNAME was born in BLOCATION on BDATE

The corresponding template clause for relation MOV IE
can be the following:

TITLE + “ (” + Y EAR + “)”

Since relation MOV IE may contain more than one tuple,
we iterate over the above template for all the tuples. We
proceed with the clause that corresponds to the relationship
that connects DIRECTOR and MOV IE. The template
label of this relationship can be represented by the following:

“As a director, ” + DNAME +
“ps work includes ” + MOV IE LIST

MOV IE LIST contains two loops bounded by the arity
of the movie tuples (similarly, arity of movie titles) and may
be defined as:

DEFINE MOV IE LIST as
[i < arityOf(TITLE)]
{TITLE[i] + “ (” + Y EAR[i] + “), ”}

[i = arityOf(TITLE)]
“ and ” + {TITLE[i] + “ (” + Y EAR[i] + “).”}

The result of applying all these steps, including instanti-
ation of the template and the appropriate concatenations,
on the database part that is relevant to “Woody Allen” in
relation DIRECTOR may be the following:

“Woody Allen was born in Brooklyn, New York,
USA on December 1, 1935. As a director, Woody
Allen’s work includes Match Point (2005), Melinda
and Melinda (2004), and Anything Else (2003).”

With a slightly different template, we could represent the
same information using more than one clause:

“Woody Allen was born in Brooklyn, New York, USA
on December 1, 1935. As a director, Woody Allen’s
work includes Match Point, Melinda and Melinda,
Anything Else. Match Point was released in 2005.
Melinda and Melinda was released in 2004. Anything
Else was released in 2003.”

The two pieces of text have some critical differences. The
first one is more compact, does not have any overlaps, is



 

CIDR Perspectives 2009 

declarative, and resembles genuine natural language. On the
other hand, its creation is more complex and in more compli-
cated cases may even be infeasible. For instance, if relation
MOV IE contains more attributes and multiple clauses are
needed to describe them, then it is difficult to create such
elegant result with the template method. The second piece
of text is constructed in a procedural manner and consists of
a coalescence of several simple sentences. This kind of syn-
thesis is simpler to create and can be used to describe more
complex database schema graphs. Automatically choosing
between the two based on the characteristics of the database
part concerned at any point is a great challenge.

Another observation concerns the text size. Although in
principle, the approach outlined above works with databases
of any size, translation of a database with a very large num-
ber of relations, attributes or tuples, will most likely lead to
less meaningful or concise answers. Based on some limited
interaction with potential users, it is clear that meaningful
and interesting answers are short. Hence, an additional chal-
lenge is limiting the resulting text to the most interesting
information. This can be realized either with structural con-
straints affecting the traversal of the database schema graph
based on weights on its nodes and/or edges, or with some
notion of ranking of the relations and tuples involved. The
latter would force the most significant tuples to be presented
first and the less significant tuples to be ignored according to
appropriate constraints. Additionally, it is possible to have
personalized settings (e.g., different heading attributes for
relations or different weights on nodes and edges) in order
to produce customized narratives for different users or user
groups.

3. USER INTERACTION ELEMENTS

3.1 Motivation
Traditionally, the application of natural-language tech-

niques to the front-end of an information systems environ-
ment has been one-directional: from NL descriptions to
queries production. In this section, we examine the other
direction as well: translation of queries into narratives.

Moving temporarilly away from the schema of Fig. 1, con-
sider the following schema with two tables: EMP (eid, sal,
age, did) and DEPT (did, dname, mgr). Consider someone
posing the following SQL query:

select e1.name
from EMP e1, EMP e2, DPT d
where e1.did=d.did and d.mgr=e2.eid

and e1.sal>e2.sal

There are several reasons why having the system provide
a natural language interpretation of the query may be use-
ful. Before the query is sent for execution, it may be nice
for the user to see it expressed in the most familiar way, as
verification that the query captures correctly the intended
meaning. Seeing something like “Find the names of em-
ployees who make more than their managers” for the above
query will be very helpful in making sure that this was in-
deed the user’s original intention. The more complicated
the query, the more important such feedback is.

In general, in any situation where explanation of queries
is warranted, such textual interpretation may be very use-
ful and effective. For example, when a query returns an

empty answer, it is nice to know the parts of the query that
are responsible for the failure. Similarly, when a query is
expected to return a very large number of answers, it is use-
ful to know the reasons, in case a rewrite would reduce the
number significantly and would serve the user better.

Clearly, the same can be said about all other commands
a user may give to a database system. Insertions, deletions,
and updates, especially those with complicated qualifica-
tions or nested constructs, will benefit from a translation
into natural language. Likewise for view definitions and in-
tegrity constraints, which borrow most of their syntax from
queries. Also, although here we focus on SQL, similar argu-
ments can be made about Relational Algebra queries, RDF
queries in SPARQL or RQL, even Datalog programs, and
others. One can claim that novice users may benefit by
textual specification of even queries posed by filling out a
form. Especially for large forms, where a user is likely to not
know the underlying semantic connections among the fields
presented in the form, a textual explanation may come in
handy.

Needless to say, offering the functionality described above
is not trivial for complicated queries and other commands.
Part of the complexity lies with the fact that there are sev-
eral alternative expressions of a query in a formal language
that are equivalent, based on associativity, commutativity,
and other algebraic properties of the query constructs. Cap-
turing the query elements in the right order so that the cor-
responding textual expression is natural and meaningful in-
dependent of the way the user has expressed the query is not
straightforward. Similarly, expressing queries with complex
embeddings or aggregations is hard.

3.2 Graph-based Query Representation
To abstract away the details of the above difficulties and

translate queries in a generic fashion, a graph-based model
can be used. Such a model is useful since (a) it is generic
enough to capture queries expressed in different languages,
(b) it can be visualized easily, so it offers an additional op-
portunity for studying queries, and (c) it can be annotated
appropriately with suitable templates, so a narrative can
then be created using appropriate parsing techniques.

Unfortunately, the graph model presented in 2.2 cannot
capture the full expressive power of SQL or other common
query languages, since queries cannot be always expressed in
terms of subgraphs of the database schema graph. (This will
become clearer with the examples of Section 3.3.) Hence, an
extension to the schema graph model is needed. Next, with-
out loss of generality, we sketch the necessary characteristics
of such a model, relying on well-defined standard techniques,
i.e., UML notation.

The schema graph representing the query, i.e., the query
graph, comprises a set of nodes representing relations in-
volved in the query, along with additional nodes represent-
ing other query functionality, e.g., group-by or order-by se-
mantics. Each relation R participating in a query Q can
be considered as a parameterized class (see Fig. 2), where
the parameter is an alias for the relation, relation alias,
corresponding to the tuple variables of the relation. Such
alias is useful when multiple instances (tuple variables) of a
relation participate in query Q. We extend the traditional
definition of a class, and we consider that it comprises four
parts. The first part specifies the name of the class, i.e., of
the relation, relation name, and it is tagged with the label



 

CIDR Perspectives 2009 

<<FROM>>
rel_name

<<SELECT>>
rel_alias.rel_name.attr1: alias1

...
rel_alias.rel_name.attrn: aliasn

<<WHERE>>
un_constraint1

...
un_constraintm

<<HAVING>>
hol_constraint1

...
hol_constraintk

<<alias>>
rel_alias

<<ORDER BY>>
rel_alias.rel_name.attri

...
rel_alias.rel_name.attrj

<<GROUP BY>>
rel_alias.rel_name.attrx

...
rel_alias.rel_name.attry

Figure 2: Schematic representation of a relation par-
ticipating in a generic SQL query

<<FROM>>. The second part involves those attributes of
relation R that participate in query Q and is tagged with the
label <<SELECT>>. The elements of this part follow the
form: relation alias.relation name.attribute: attribute alias.
The third part involves query constraints and is tagged with
the label <<WHERE>>. The last part comprises grouping
constraints and is tagged with the label <<HAV ING>>.
The grouping attributes and the ordering of the relation
are captured by two UML notes, <<GROUP BY >> and
<<ORDER BY >>, respectively.

The edges of the query graph can be generic join edges
expressing arbitrary join conditions, projection edges con-
necting the relation with its attributes contained in the
query, edges that connect the relation with elements of its
‘WHERE’ and ‘HAVING’ parts and with the ‘GROUP BY’
and ‘ORDER BY’ notes, and edges that connect the inner
and outer parts of a nested query. Similarly to the annota-
tion of the database graph (see Section 2.2), template labels
can be assigned to those edges.

Hence, again, the translation can be realized in terms of
traversing the query graph; however, this is nontrivial for
all query types. To illustrate the difficulty that such trans-
lations represent, we present below several SQL query ex-
amples of escalating complexity. All queries correspond to
the schema depicted in (Fig. 1) and, whenever possible, we
show the respective query graphs considering only relation
nodes and join edges. We do not aim at demonstrating a
complete solution; rather, our goal is to pinpoint the exist-
ing challenges, to present a categorization of queries w.r.t.
the effort needed for their translation into narratives, and to
show that a graph-based approach similar to the one used for
the translation of the content is feasible for a large variety
of queries.

3.3 Interesting Cases

3.3.1 Path Queries
These are simple queries, whose graph representation is a

path on the schema graph. Algebraically, these are select-
project-join (SPJ) queries with at most two joins per relation
and only one instance (tuple variable) per relation.

Query 1. Consider a simple query, Q1, which involves
the relations MOV IES, CAST , and ACTOR as follows:

<<FROM>>
Movies

<<SELECT>>
M.Movies.Title: title

<<WHERE>>

<<HAVING>>

<<alias>>
M <<FROM>>

Cast

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
C <<FROM>>

Actor

<<SELECT>>

<<WHERE>>
A.name = ``Brad Pitt’’

<<HAVING>>

<<alias>>
A

M.id = C.mid C.aid = A.id

Figure 3: A simple path query (Q1)

select m.title
from MOVIES m, CAST c, ACTOR a
where m.id = c.mid and c.aid = a.id

and a.name = ‘Brad

The graph-based representation of Q1, a simple path, is
depicted in Fig. 3. The joins are based on foreign key (FK)
relationships and are depicted as edges connecting the re-
lations involved. Each class representing a relation con-
tains the appropriate attributes or constraints. Like all path
queries, Q1 can be translated relatively easily: using transla-
tion mechanisms similar to those for database contents (see
Section 2.2) and following a simple DFS-like traversal of the
query graph, we can compose sentences such as:

“Find the titles of movies where the actor Brad Pitt plays”.

Furthermore, using more elaborated translation techniques,
when more complex template labels are available, we can
produce even more natural phrases, like:

“Find movies where Brad Pitt plays”

Such phrases are created when the heading attribute is
replaced by the conceptual meaning of the relation –e.g,
‘title’→‘movies’ and ‘name’→‘actor’– or by the tuple vari-
able –e.g., ‘name’→‘actor’ →‘Brad Pitt’.

3.3.2 Subgraph Queries
These are somewhat more difficult queries, whose graph

representation is any (acyclic) subgraph of the schema graph
(not necessarily a path). Algebraically, these are still select-
project-join (SPJ) queries with only one instance (tuple vari-
able) per relation, but no constraint on the number of joins
a relation participates in.

Query 2. Consider the following query, Q2, which in-
volves a large number of relations interconnected via FK
join relationships:

select a.name, m.title
from MOVIES m, CAST c, ACTOR a,

DIRECTED r, DIRECTOR d, GENRE g
where m.id = c.mid and c.aid = a.id

and m.id = r.mid and r.did = d.id
and m.id = g.mid and d.name = ‘G. Loucas’
and g.genre = ‘action’

The graph-based representation of Q2 is depicted in Fig.
4. Given that subgraph queries do not deviate at all from the
underlying database schema, they can again be translated
using translation mechanisms similar to those for database
contents (see Section 2.2). For example, with appropriate
templates, Q2 can be translated into:

“Find the actors and titles of action movies directed
by G. Loucas”



 

CIDR Perspectives 2009 

<<FROM>>
Movies

<<SELECT>>
M.Movies.Title: title

<<WHERE>>

<<HAVING>>

<<alias>>
M <<FROM>>

Cast

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
C

M.id = C.mid

C.aid = A.idM.id = G.mid

M.id = R.mid

R.did = D.id

<<FROM>>
Directed

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
R

<<FROM>>
Director

<<SELECT>>

<<WHERE>>
D.name = ``G. Loucas’’

<<HAVING>>

<<alias>>
D <<FROM>>

Genre

<<SELECT>>

<<WHERE>>
G.genre = ``action’’

<<HAVING>>

<<alias>>
G <<FROM>>

Actor

<<SELECT>>
A.Actor.name: A.name

<<WHERE>>

<<HAVING>>

<<alias>>
A

Figure 4: A more complex subgraph query (Q2)

3.3.3 Graph Queries
At the next level of difficulty, one finds queries that can

still be represented by a graph that is a (possibly cyclic)
subgraph of the schema graph or at least of an extension of
it; in the sense that it may contain multiple instances of an
existing node. Algebraically, these are all select-project-join
(SPJ) queries with no restrictions.

Query 3. Consider the following query, Q3, which in-
volves two instances (tuple variables) of some relations:

select a1.name, a2.name
from MOVIES m, CAST c1, ACTOR a1,

CAST c2, ACTOR a2
where m.id = c1.mid and c1.aid = a1.id

and m.id = c2.mid and c2.aid = a2.id
and a1.id > a2.id

The graph-based representation of Q3 is depicted in Fig.
5. It is still based on the schema graph, but now it has
pieces of it repeated in multiple copies. Assuming that the
translation templates are repeated on all of these copies and
exist for the relevant non-FK joins, the database content
translation techniques we have summarized above (in Sec-
tion 2.2) could certainly be applied to generate a relevant
piece of text. However, the result would be quite unnatural,
even in the best case:

“Find the name of an actor who has played in a
movie, and the name of another actor who has played
in the movie, and the id of the first actor is larger
than the id of the second actor”

Generating a natural sentence for this query requires that
whole parts of the query graph be translated into individual
phrases, essentially moving away from local template labels,
that are associated with single attributes and assigning them
to larger schema/query parts. How to define such template
labels, whether or not there are any general patterns that
should be followed, and so on, are open issues that require
investigation. Based on how a human would translate query
Q3, which is given below, it seems that identifying an effec-
tive approach is nontrivial:

“Find pairs of actor who have played in the same movie”

Query 4. Similar difficulties arise when the query graph
contains cycles. Again, non-local template labels are needed,
including some for non-FK joins, to capture a query natu-
rally. Query Q4 below belongs to this category:

M.id = C2.mid

C2.aid = A2.id

A1.id > A2.id

M.id = C1.mid

C1.aid = A1.id

<<FROM>>
Cast

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
C1 <<FROM>>

Movies

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
M <<FROM>>

Cast

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
C2

<<FROM>>
Actor

<<SELECT>>
A2.Actor.name: A2.name

<<WHERE>>

<<HAVING>>

<<alias>>
A2<<FROM>>

Actor

<<SELECT>>
A1.Actor.name: A1.name

<<WHERE>>

<<HAVING>>

<<alias>>
A1

Figure 5: A multi-instance query (Q3)

<<FROM>>
Movies

<<SELECT>>
M.Movies.Title: title

<<WHERE>>

<<HAVING>>

<<alias>>
M <<FROM>>

Cast

<<SELECT>>

<<WHERE>>

<<HAVING>>

<<alias>>
C

M.id = C.mid

C.role = M.title

Figure 6: A cyclic query (Q4)

select m.title from MOVIES m, CAST c
where m.id = c.mid and c.role = m.title

Obtaining its translation from its query graph (Fig. 6) is
a challenge:

“Find movies whose title is one of their roles”

3.3.4 Non-Graph Queries
Non-graph queries are those that cannot be represented

on top of the schema graph or an expanded version of it with
multiple copies of some of its parts. Algebraically, these are
queries that involve operators other than select-project-join,
or at least expressing them with just these operators is not
obvious from their syntax. There are essentially two types
of such queries: nested and aggregate queries.

Nested queries can also be classified into two categories:
those that do have a flat (SPJ) equivalent and those that do
not, as exemplified below. Each category presents its own
challenges for translation.

Query 5. Consider the following nested query, Q5, where
in is the only nesting connector:

select m.title from MOVIES m
where id in (

select c.mid from CAST c
where c.aid in (

select a.id from ACTOR a
where a.name = ‘Brad Pitt’))

Clearly, query Q5 has a flat equivalent described in query
Q1:

select m.title from MOVIES m, CAST c, ACTOR a
where m.id = c.mid and c.aid = a.id

and a.name = ‘Brad Pitt’

Hence, the translation desired would be similar to the
following:



 

CIDR Perspectives 2009 

Q

NQ1

<<FROM>>
Movies

<<SELECT>>
M.Movies.id: id

M.Movies.Title: title

<<WHERE>>

<<HAVING>>
1 < NQ1

<<alias>>
M

<<FROM>>
Cast

<<SELECT>>
count(*)

<<WHERE>>

<<HAVING>>

<<alias>>
C

M.id = C.mid

M.id = G.mid

<<FROM>>
Genre

<<SELECT>>
count(*)

<<WHERE>>

<<HAVING>>

<<alias>>
G

<<GROUP BY>>
M.Movies.id

M.Movies.title

Figure 7: An aggregate query (Q7)

“Find movies where Brat Pitt plays”

Obtaining this from the original form is almost impossi-
ble, while it is straightforward to obtain from the flat form of
the query. Hence, identifying equivalent query forms is im-
portant and receives new life as a problem when motivated
by translatability principles,

Query 6. Consider the following nested query, Q6, where
connectors other than in take part in the nesting:

select a.title from MOVIES a
where not exists (

select ∗ from GENRE G1
where not exists (

select ∗ from GENRE a2
where a2.mid = m.id))

Translating the above rather intertwined query is clearly
a complex task, as ideally, one would want something rather
short for its translation:

“Find movies that have all genres”

Query 7. Aggregate queries present similar challenges,
since one cannot rely on the underlying graph. The magni-
tude of the problem is just shown with the query Q7:

select m.id, m.title, count(∗) from MOVIES m, CAST c
where m.id = c.mid
group by m.id, m.title
having 1 < (select count(∗)

from GENRE g
where g.mid=m.id)

A graphical representation of Q7 is depicted in Fig. 7.
Observe that the nested part of the query is represented
graphically as an additional query (NQ1). (Again, for sim-
plicity most of the edges are not depicted.) That facilitates
a procedural translation of the query; however, the challenge
is to create a declarative one:

“Find the number of actors in movies of more than
one genre”

3.3.5 Impossible Queries
Even in the most difficult of the cases mentioned so far,

one could imagine ways to be explored in order to iden-
tify the appropriate translation techniques. There are some,

however, that appear simply “impossible”. These are queries
whose semantics are not derivable from the query-graph rep-
resentation and require higher-order languages, which are a
very challenging to use every day.

Query 8. In query Q8, the semantics is unclear. Syntac-
tically, one sees a standard aggregate query, but in reality,
it is the count aggregate that implies all and dominates the
query.

select a.id, a.name
from MOVIES m, CAST c, ACTOR a
where m.id = c.mid and c.aid = a.id
group by a.id, a.name
having count(distinct m.year) = 1

Hence, it is not obvious how to produce the correct nar-
rative:

“Find actors whose movies are all in the same year”

Query 9. In query Q9, the semantics is unclear as well,
but in a rather different way. This time, syntactically, one
does see the all connector as the main challenge, but the
expression ‘= all’ will have to be interpreted as ‘earliest’ in
this case, which is very difficult to obtain.

select a.name
from MOVIES m, CAST c, ACTOR a
where m.id = c.mid and c.aid = a.id

and year <= all (
select m1.year
from MOVIES m1, MOVIES m2
where m1.title = m.title and m2.title = m.title

and m1.id != m2.id
)

Consequently, it is very difficult to produce the following
text:

“Find the actors who have played in the earliest ver-
sions of movies that have been repeated”

For a system to recognize that a good way to express the
meaning of these relatively simple queries is with phrases
like the above is nontrivial. Identifying the correct use of
pronouns is one source of difficulties. Another one is re-
lated to whether or not the description will be declarative
(as in the above two examples) or procedural, i.e., whether
it will just specify what the query answer should satisfy or
also the actions that need to be performed for the answer
to be generated. The former is always desirable, but for
complicated queries, the latter may be the only reasonable
approach. Identifying the complexity point where this be-
comes the case, however, is far from understood, and work
must be done on this.

4. RELATED WORK
Earlier interaction of databases and natural language pro-

cessing has focused mainly on the opposite direction of the
one considered in this paper. Several works are presented
concerning NL Querying [5], NL and Schema Design [12],
NL and Database interfaces [1, 6], and Question Answering
[10]. Hence, as far as we are aware of, related literature
on NL and databases has focused on totally different issues



 

CIDR Perspectives 2009 

such as the interpretation of users’ phrasal questions to a
database language, e.g., SQL, or to the automatic database
design, e.g., with the usage of ontologies [11]. Several re-
cent efforts use phrasal patterns or question templates to
facilitate the answering procedure [6, 10].

In earlier work, we have studied the problem of translating
small databases or query answers under certain constraints
with promising results [8, 9]. In that work, the translation
involves databases with content, i.e., the translation is per-
formed at the data level. In this work, we investigate issues
related to the translation of queries too, thus, we mainly
work at the schema level. In a previous work, we have dis-
cussed the usefulness of translating SQL queries into narra-
tives [4]. Here, we elaborate on that, we examine the space
of the problem, and we discuss useful directions for reaching
such goal.

5. CONCLUSIONS
In this paper, we have looked into the intersection of the

Database and Natural Language Processing areas and have
outlined several interesting problems that arise when one
attempts to translate database elements into natural lan-
guage elements. We have discussed the translation of both
database contents and queries. Translating database con-
tent is not an easy task, mainly because it is not straight-
forward to choose the appropriate schema constructs and
data items for composing a concise and meaningful narra-
tive. Apart from such structural problems, identifying the
right linguistic constructs, introducing pronouns where ap-
propriate, and synthesizing everything to produce a natural
end result are equally complex. On the other hand, trans-
lating database content to natural language is simpler from
translating queries, as the extent of alternative equivalent
expressions of schemas and data is much narrower than that
of queries.

Additionally, we have offered example applications that
indicate the practical usefulness of the problem, have iden-
tified several categories of database elements whose trans-
lation into text would be useful, and have briefly described
some of the technical challenges that need to be addressed in
the future. We hope that researchers will take up this type
of problems and help to push this interesting area forward.

6. ACKNOWLEDGEMENTS
We are grateful to Georgia Koutrika for sharing her ideas

with us and for commenting on several versions of this paper.

7. REFERENCES
[1] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.

Natural language interfaces to databases-an
introduction. CoRR, 9503016, 1995.

[2] R. Cole, J. Mariani, H. Uszkoreit, G. Varile,
A. Zaenen, V. Zue, and A. Zampolli. Survey of the
State of the Art in Human Language Technology.
Cambridge University Press and Giardini, 1997.

[3] Gartner. Gartner identifies seven grand challenges
facing IT. In Gartner Emerging Trends Symposium -
ITxpo, 2008.

[4] Y. E. Ioannidis. From databases to natural language:
The unusual direction. In NLDB, pages 12–16, 2008.

[5] E. Métais, J.-N. Meunier, and G. Levreau. Database
schema design: A perspective from natural language
techniques to validation and view integration. In ER,
pages 190–205, 1993.

[6] M. Minock. A phrasal approach to natural language
interfaces over databases. In NLDB, pages 333–336,
2005.

[7] T. Schultz and K. Kirchhoff. Multilingual Speech
Processing, chapter 10. Speech-to-Speech Translation.
Elsevier, Academic Press, 2006.

[8] A. Simitsis and G. Koutrika. Comprehensible answers
to précis queries. In CAiSE, pages 142–156, 2006.

[9] A. Simitsis, G. Koutrika, Y. Alexandrakis, and Y. E.
Ioannidis. Synthesizing structured text from logical
database subsets. In EDBT, pages 428–439, 2008.

[10] E. Sneiders. Automated question answering using
question templates that cover the conceptual model of
the database. In NLDB, pages 235–239, 2002.

[11] V. C. Storey. Understanding and representing
relationship semantics in database design. In NLDB,
pages 79–90, 2000.

[12] V. C. Storey, R. C. Goldstein, and H. Ullrich. Näıve
semantics to support automated database design.
IEEE TKDE, 14(1):1–12, 2002.


