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ABSTRACT

Recently, many content sites have started encouraginguibeis to
engage in social activities such as adding buddies on Yahaokl
and sharing articles with their friends on New York Timesisitas
led to the emergence abcial content sitgeswvhich is being facili-
tated by initiatives like Openlband OpenSocial These commu
nity standards enable the open access to users’ socialesrafid
connections by individual content sites and are bringingteat-
oriented sites and social networking sites ever closer. ifitee
gration of content and social information raises new chgls for
information management and discoveryer such sites. We pro-
pose a logical architecture, nam®ekialScope, consisting of three
layers, for tackling the challenges. Thentent managemetayer

is responsible for integrating, maintaining and physjcaticessing
the content and social data. Timformation discoveryayer takes
care of analyzing content to derive interesting new infdarama and
interpreting and processing the user’s information neddentify
relevant information. Finally, thanformation presentatioriayer
explores the discovered information and helps users betiger-
stand it in a principled way. We describe the challenges ahea
layer and propose solutions for some of those challengeparn
ticular, we propose a uniform algebraic framework, which ba
leveraged to uniformly and flexibly specify many of the infa-
tion discovery and analysis tasks and provide the foundddiothe
optimization of those tasks.

1. INTRODUCTION

Web 2.0 is leading to an increasing integration of contefarin
mation with the social information (profiles, connectionsl activ-
ities) of users, giving rise teocial content sitesSites like Flickr
and del.icio.us started out as such sites by enabling ustag and
share contents like photos and bookmarks. More recentiyever,
sites that started as pure content oriented or pure sodiabrie
ing focused are increasingly marching toward such an intemgr.
For example, content sites like Amazon and Yahoo!Travebare
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coming more social: users can now become friends, shareront
with each other, and tag the content with their own desomgti
Similarly, social sites like MySpace and Facebook are agidiore
content: users can add contents like photos and news itethsito
personal spaces, making the site more practically useftheir
daily lives.

We envision this integration of social sites and contemtsdio be
greatly helped by initiatives like OpenlD and OpenSocidley can
now collaborate with each other to fowirtual social content sites,
where the social sites manage the user’s social life andahtet
sites manage the detailed content information. We aredlret-
nessing this in many domains. For example, on most onlinesnew
sites (e.g., New York Times), each article is accompanietusy
tons corresponding to Facebook, del.icio.us, etc., whichvayou
to quickly post the article to your favorite social site ardhe it
with friends. Together, the social site(s) and the contiéa@tferm a
powerful virtual social content site that can engage a tangenber
of users much more deeply than each individual site.

Another important trend is thiacreasing structural richness of
informationabout the users and the content. On one hand, social
sites are knowing more about us through the rich informaiven
voluntarily provide (e.g., name, interests, etc.). On ttheeohand,
content sites are generating more structured informasanrasult
of advances in information extraction and wiki-style maskab-
orations. Only a few years ago, almost all the Wikipedia page
were pure text articles. Now, nearly all of the highly visitenes
contain some structured information (e.g., Infoboxes)aedrga-
nized within a set of loosely defined category hierarchies.

The ways in which those sites help their users discover -infor
mation, however, have evolved little from the traditionaiword-
based search paradigm. The rapidly growing social graptierun
lying those social content sites are rarely leveraged tiebserve
the user’s information needs. There is still a dichotomyneein
information retrieval, which focuses on locating inforioat that
is semantically relevant to a user query, and informatiarome
mendation, which focuses on identifying information a uséght
prefer based on her social profile activities and those ofsber
cial connections. Finally, results are still ranked andspreed in a
predominantly list-based fashion, not taking advantagefrich
structure and social provenance embedded in them.

In this paper, we identify the research challenges and oipier
ties associated with managing and discovering informatioso-
cial content sites. We present an architectural vistamjalScope,
as a platform where those challenges can be addressed. |ut fir
we provide some motivating examples in the context of anaald
social content site, Yahoo!Travel.
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general categorical specific
(e.g., things to do) (e.qg., family)
with locations 32.36% 22.52% 8.37%
w/o locations 21.38% 5.34% '

Table 1: Summary Statistics of 10 Million Y!Travel Queries.

2. CASE STUDY WITH YAHOO! TRAVEL

Y! Travel 2 is a typical content site that is gradually evolving
into a social content site. Initially built as a portal onviehdesti-
nations, it has been incorporating various social featurasding
allowing users to tag travel destination and showing themilar
travelers. It has also been interacting withLocal andFl i ckr
to provide more structured information and social data tides-
tinations. These days, users vigitTr avel to look for informa-
tion about travel destinations as well as to learn about friends
and other travelers. We briefly describe the data and quéries
Y! Travel .

Y!Travel Data: Y! Travel maintains a comprehensive set of
travel objects: cities, restaurants, etc., each with ita stmucture.
Various semantic links are established between objectsexam-
ple, Fisherman’s Wharf and San Francisco are connectedghro
geographical containment. Users ¥hTr avel provide detailed
information about themselves, including self-tags, e$ts, etc.,
and they are also connected in various ways. For examplectme
be friends orFl i ckr or contacts on the Instant Messenger net-
work. Finally, users browse travel objects, tag them witwards,
and provide ratings and reviews on them, creating connestie-
tween users and objects.

Y!Travel Queries: Users interact withy! Tr avel through a
search interface, where they enter a set of keywords andnadta
list of travel objects considered relevant to their querid& con-
ducted a comprehensive analysis on 10 million redérir avel
queries to better understand the user behavior. The resal®im-
marized in Table 1. By leveraging the domain knowledge weshav
about geographical locations and travel destinations, etectl lo-
cation terms in queries and classify each query into thrassek:
general, categorical, and specificGeneral queries are those con-
taining terms like “things to do”, “attraction”, or just adation by
itself. Over 50% of the queries fall into this class, and altf%o of
those queries contain a location. Categorical queries tefinose
containing terms like “hotel”, “family”, “historic”, etcAbout 30%
of the queries fall into this class and a majority of them riment
location. Finally, there are also about 8% of the queriekitapfor
specific destinations like “Disneyland” and “Yosemite Park

The distributions ofY! Tr avel queries indicate that the main
information needs of users are not specific destinatiorts;aoer
the set ofinterestingdestinations among a large group that are
loosely constrained by the general or categorical quefies is in
contrast with web search engines, where users are mostighsea
ing for specific information. As a result, the search panadig a
poor fitforY! Tr avel because itis inherently hard to discriminate
among a large group of results based purely on the query kelgvo
For example, almost all destinationsY¥hTr avel areattractions
To address this problen¥! Tr avel manually creates guides of
“things to do”, “hotels”, and “restaurants” for popular tieations,
which are extensively browsed by users. However, it is irsjids
to manually create the “right” guide for each user on all tkesions
and queries. A new information discovery paradigm is theef
needed forY! Tr avel and other similar social content sites. In
the rest of this section, we describe our vision of this neragigm

Shttp://travel.yahoo.com/
“There are about 10% of the queries that we were unable tdafglass

through three hypothetical examples involvivigTr avel thatare
synthesized from our extensive conversations with actseilsu

2.1 Motivating Examples

EXAMPLE 1. John is in Denver for a conference. Having one
day free, he visit&! Tr avel and searches for “Denver attrac-
tions”. John has in the past visited quite a few baseball fiedd
Y! Tr avel and has many friends drRacebook with interests in
“baseball”. With this knowledgeY! Tr avel recommends to him
“B’s Ballpark Museum” (a small baseball museum in the suburb
“Coors Field” (home field of the Rockies), as well as the upoam
baseball game “Yankees vs Rockies” to be played at Coorsl Fiel
which is fetched frony! Sport s.

Example 1 represents one out of three querie¥'ofir avel .
However, the traditional information retrieval approaelis for it
because there are often many objects that are semantietdly r
vant to John’s query and no ranking mechanism (e.g., tf-idém
sure) based on pusemantic relevancean differentiate them. Itis
therefore imperative for the system to incorporsaeial relevance
which considers John's social profile and connections, tdde
which attractions he will prefer. Essentially, informatidiscov-
ery on social content sites requires the integration of tvajom
paradigms: semantic relevance with respect to a query aidl so
relevance in the spirit of recommendations. The former ssdbe
discovery to information relevant to John’s current neeslex
pressed by him, while the latter identifies the informatioostrap-
pealing to John as a user. Indeed, “B’s Ballpark Museum” naty n
be a major attraction, yet John, being a baseball fan, isylitee
enjoy a visit to it. Example 1 further illustrates anotheipornant
desideratum: the need tetrieve relevant information from exter-
nal social or content sitethat are physically and administratively
separate fronY! Tr avel , which is becoming possible because of
various initiatives like OpenSocial.

EXAMPLE 2. Selma, a young musician with two babies, is plan-
ning a family trip to Barcelona. She searches for “Barceldamily
trip with babies” onY! Tr avel . As in John’s caseY! Tr avel
searches for attractions that are semantically and sogiedlevant
to Selma. While Selma is well-connected to her musiciandsge
very few of them have kids and are suitable for trip recomraend
tion to Selma in this case. Instead, Tr avel analyzes her other
friends who have made similar family trips before and usesnth
as the social basis for recommending baby-friendly attoet like
the “Parc de la Ciutadella”.

Selma’s example illustrates the importanceanflyzing the so-
cial connections of usemnd choosing the right subset of the con-
nections as the basis for discovering socially-relevastilts. Un-
like in John’s caseY! Tr avel hasto understand the distinct groups
of friends that Selma has and pick the right group for her fiaoni-
ented query. This analysis, however, is non-trivial sifeenature
of social activities and connections are often implicit aradsy.
Determining whether a social connection is suitable fomaamsg
a particular query is a significant challenge for a sociateonsite
and may even require an interaction with the user. Furthermo
it is not always possible or necessary to “personalize”aaele-
vances. Even if Selma does not have any friend with youngelsabi
Y! Travel should still be able identify a group of “experts” on
the topic to help answer Selma’s query. This would requiterex
sive data analysis to identify topics within the data anduséth
expertise on the topics.

ExamMpPLE 3. Alexia is a high school student planning a sum-
mer field trip for an assignment from her history class. Shee®
toY! Travel and searches for “American history” to find places
for research on the subject. As in previous examptég;r avel
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Figure 1: Architecture of SocialScope.

leverages Alexia’s social information and finds a set of seinally
and socially relevant places. However, the results thietoon-
tain places from throughout the country and fall into marfjedent
topics. Recognizing the chaotic nature of the resiftsTr avel
moves away from the traditional list-based presentatiom auto-
matically groups results along multiple dimensions: gequpical
or organized based on who—her classmates in the historg dias
her friends on the soccer team—endorse it. Furthermdrdyr avel
analyzes the result destinations and present related $qgig., In-
dependence War) and users (e.g., Jane, who left commentargn m
result destinations) to Alexia.

Example 3 illustrates another important aspect in inforomat
discovery on social content sitegesult presentation Similar to
Alexia’s case, there can be many equally relevant (senadlytand
socially) results to a user and her query, and alternatiesgmta-
tion mechanisms need to be employed for the users to efédgtiv
explore the results. For example, grouping can be accohgalis
based on the rich structure information associated with eafect
in a way similar to faceted search. More interestingly, igialo
content sites, each result also has an associated socienaice
that can be explored for more sophisticated grouping. Eumtbre,
users like Alexia are often not just specifically looking @hjects:
they are also interested in exploring other informationg.(esim-
ilar users and associated topics) related to their infdonateed.

Finally, the fact that most user queries are exploratoryan n
ture calls foreffective ways to present the resuitsfacilitate in-
formation exploration. While faceted search [14] has mdddes
in helping users explore query results, it does not accaamsd-
cial provenances. Discovering the most effective grougieither
based on structural attributes or on social relevance,ignifisant
new challenge.

3. ARCHITECTURAL VISION

Figure 1 describes the logical architectureSekialScope. At
its core is thesocial content graphwhich represents users, objects,
and various connections among them. Information in the lgrap
may belocally ownedle.g., destinations iM! Tr avel ), externally
integrated(e.g., friendship connection obtained frétacebook)
or derived(e.qg., links describing similarities between users). €hre
layers, Content Managementnformation Discovery and Infor-
mation Presentationform the entireSocialScope system, and we
briefly describe each next.

Information Discovery (Section 5): This layer consists of two
components:Content Analyzeand Information Discoverer The
Content Analyzer derives new nodes (e.g., topics) and lialks,
similarities between users) through various analyses, (eagent
Dirichlet Allocation [8], association rule mining [3]) ofie raw so-

Y! Tr avel needs to detect when such explorations are warranted cial content graph in an off-line fashion. Those analyses

and how to facilitate them.

2.2 Insights from the Examples

As all three examples have emphasized, effective sociaénbn
discovery calls for arnintegration of three major paradigms: key-
word search, database-style querying, and recommendatibine
search/query paradigm helps users express their need amdvna
down the discovery scope, while the recommendation pamadiy
ables the system to guide and expand the discovery procgiatiyso
The fact that social and semantic relevances play an equgiyr-
tant role distinguishes this frompersonalized searcf21], where
personalization is achieved by re-ranking semanticallgvemnt re-
sults in a post-processing step.

Secondthe social information on social content sites are much
more complexhan in traditional recommendation systems [24]. In-
stead of being characterized simply by what items they head r
or bought previously, users can participate in variousad@uitivi-
ties and establish connections with different semantibgse con-
nections need to be analyzed and selectively applied to thelp
discovery process.

specified and triggered automatically by the system itselfyoa
Social Content AdministratorThe Information Discoverer parses
the user query, constructs its internal representaticesefbon var-
ious semantic and social relevance computations), andiaesl
them on the social content graph. The result is a social obath-
graph, calledMeaningful Social GrapfMSG), that is semantically
and socially relevant to a given user and query. One maj@orvis
of SocialScope is to enableuniform manipulation of social content
graphs leading to declarative, flexible, and optimizable graphlan
ysis and information discovery processes. We accomplishbth
proposing a logical algebraic framework for social contgretph
manipulation.

Content Management(Section 6): This layer handles two main
tasks. First, it facilitates the incorporation of sociafoirmation
from remote sites througontent Integrator This has become
increasingly important as open standards like OpenSoeizdine
widely accepted, which allow the core social content sitdsver-
age the large amount of information within social sites. The-
ond task is the maintenance and retrieval of the social obgtaph
through theData Manager which abstracts away the physical im-
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plementation of the graph. In addition, given that muchaomn-
tent is created and maintained externally, Data Managestsn&e
make decisions on when and how to refresh parts of the saeiphg
efficiently. TheActivity Managerhelps in that regard by categoriz-
ing users based on their activities.

Information Presentation (Section 7): This layer provides a
comprehensive result exploration framework. It admitsasi the
MSG from the Information Discovery layer and dynamically or
ganizes the results for effective exploration by the uséer& are
two key primitives: grouping and ranking, managed by Infation
Organizer and Result Selector, respectively. The formemtifles
appropriate (structural or social) criteria for groupiegults, while
the latter identifies appropriate mechanisms for rankirgysatect-
ing results within or across groups. When multiple predéenia
groups are available, Information Organizer also makessibes
on which group is more relevant to the user and her current-inf
mation needs.

Let’s begin by introducing the data and query models adopyed
SocialScope.

4. DATA AND QUERY MODEL

Nodes and Links We adopt a graph model for representing so-
cial content. Intuitively, nodes in the graph repreggmysical and
abstract entitiedike users and topics, and links represeabhnec-
tions and activitiebetween entities such as friendship and tagging
actions. Each node or link has a uniqua. It is worth noting that
the graph model described here is a logical model that iSedtd
any specific physical implementation.

Nodes and links contain structural attributes, includimgaanda-
tory t ype attribute. We adopt a flexible (i.e., schema-less) typing
system and allow theype attribute to have multiple values. For
example:n; = {id=1; type='user, traveler’; name="'Johjn'and
no = {id=2; type='item, city’; name="Denver’; keywords="skiin}
are two nodes representing our traveler John and the city Den
ver, respectively, in Example 1. Similarlfz(n1,n2) = {id=12;
type='act, tag’; date='2008-8-2’; tags="rockies basé&hais a link
recording the activity that John tagged Denver with tagsKies
baseball’. Our typing system gives us the flexibility of dneg
new types through content analysis. We also maintain arviexpl
catalog of basic types, includingser ,i t emt opi ¢, gr oup for
nodes ancconnect (e.g., friend),act (e.g., tag, review, click,
etc.),mat ch, bel ong for links. Those basic types are adequate
for modeling most of the social content sites we have enevadt

Social Content Graphs We model an instance of a social con-
tent site as aocial content graph A social content graph con-
sists of nodes and links as described above. It is sometioreee
nient to view the social content graph as an overlay of saipigs,
namely theactivity graph which maintains users’ activities on items,
the network graph which maintains social connections, and the
topical graph which maintains links from users or items to derived
semantic groups or topics.

Queries Users interact wittSocialScope by specifying a (pos-
sibly empty) query on content and strucfurStructural predicates
are interpreted in the usual Boolean sense, while contemdico
tions are used to compute semantic relevance which, comhbine
with social relevance, results in a single relevance scbhe. sys-

tem generates recommendations within the scope definedeby th

query, treating the structural predicates as the conssraiefin-
ing the scope. When the structural predicates are absetiein t
query, only semantic relevance and social relevance aes taito

SHere and elsewhere, the term structure refers to the agfiaiue
pairs associated with nodes and links.

account. And when a query is empty, only social relevance-is a
counted for.

5. INFORMATION DISCOVERY:
AN ALGEBRAIC FRAMEWORK

Developingan efficient and flexible mechanism to manipulate
the social content grapis a major goal of the Information Dis-
covery layer. While social network graphs have been theestibj
of a number of social network analyses [23, 27, 29] and secial
tivity graphs have been leveraged in various recommendatigo-
rithms [2, 24], most of those works are designed for simpégpbs
(i.e., no complex structures on nodes or links) and adoptaad-
methods. This leaves the system with few opportunitiesdase,
customization and optimization. Furthermore, while seiag for
objects based on content relevance has been extensivéigdhe-
fore, it has never been integrated into a social context nmaipled
way. We believe a uniform algebraic framework is needed te ma
nipulate the kind of complex social content graphs we entastin
social content sites and to provide flexibility in the manmexhich
information is analyzed and discovered.

We thus propose a logical algebra that is capable of exmgssi
sophisticated tasks for data analysis and discoveringabpeind
semantically relevant results. Each operator in the alyédkes
social content graphs as input and outputs a social contaphgin
the next section, we present our algebra formally and detraias
the expressive power of the algebra by showing a comprefensi
set of tasks that can be expressed in the algebra.

5.1 Unary Operators

At the core of the algebra are two unary selection operators:
Node Selectiond(t. s,) and Link Selection4{;, s,). Both op-
erators take a conditiof’ and an optional scoring functio as
parameters, and a (social content) graph as input. Thetoamdi
consists of a list of structural conditions (e.ftype=‘city’, rating
>‘0.5'}) and a set of keywords (e.g., ‘Denver attraction’). Satisfa
tion of the structural conditions by a node is defined in theimls
manner: a node is said to satisfy a structural condition of the form
at t =valy, ..., valg, if the set ofv’s values forat t is a superset of
the values{vali, ..., val, }. When an optional scoring functiai
is specified as an input parameter, a score is generated &idorg
each node based on how well its content matches the keywords i
C. If no scoring function is specified, bat includes keywords, a
default scoring function is used for generating the scoiiealfy,
Node Selection outputs a null graph consisting of nodes (emd
links) of the input graph that satisfy the node conditidn And a
score is generated (kY) and attached to each node in the output

graph. More formally:
DEFINITION1 (NODE SELECTION). aé\’c’&(G) =

{v,v.score = §(v) | v € nodegG) A v satisfieC}. [
Link Selection is defined in an analogous manner, with theesam

format specification and satisfaction definition for coimhitC'. Link

Selection outputs a subgraph of the input graph induced dseth
links satisfying the selection conditi@fi. And a score is generated
by the optional scoring functioff and attached to each link within

the output graph. More formally:

DEFINITION2  (LINK SELECTION). U<Lc,s>(G) =
{€,L.score = S(l) | £ € links(G) A ¢ satisfiesC}. [

Note that in the examples that will follow, we often omit the
scoring function for clarity.

5.2 Basic Binary Operators

Also in the core framework are the binary set operators. We
define the three common operators, Intersectio)y Union (),
Minus (\), as follows:
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DEFINITION 3 (SET-THEORETIC OPERATOR%. Let G and

DEFINITIONS5 (ComPOSITION). Let G; andG2 be two so-

G2 be two social content graphs originated from the same social cial content graphs originated from the same social corgitat

content site. G1 U G2, G1 N G2, andG: \ G2 are defined as:
node$G: @ G2) nodesG1) @ nodegG2) and links(G1 @
G2) = links(G1) @ links(G2), where® is one ofU,n,\, and
nodes and links with the sanmeal are consolidated in the output
graph. O

As an example, a link belongs @ \ G if and only if it is in
G1 but notinG2. Note that a link inG:1 \ G2 must necessarily be
incident on nodes which appear@ but not inG-.

Remarks: First, in all the definitions above, nodes and links are
matched on the basis of theid, as a result, graph isomorphism
is not an issue. Second, we note that the opefatan be defined
in more than one way. According to the definition abaie,\ G2
is the subgraph of7; induced by those nodes 6f; which are not
present inG2. Thus, all links inG1 \ G2 are necessarily those for
which both endpoints are presentdn but not inGz. We call this
the Node-Driven Minusoperator. Below, we give an alternative,
link-driven, definition of the Minus operator, denotegd.’

DEFINITION 4 (LINK-DRIVEN MINUS). Let G; and G2 be
two social content graphs originated from the same sociatect
site. G1\:G2 is defined aslinks(G1\: G2) = links(G1)\ links(G2);
nodesG1\:G2) consists precisely of those nodes which are in-
duced by the set of links itinks(G1\:G2). O

As an example of the difference between Node-Driven and-Link
Driven Minus operators, considét, = {(a,b), (a,c), (b,c)} and
G2 = {(a,b)}. G1\ G2 is anull graph containing only nodeand
no links. On the other handy;\-G2 contains all the three nodes
a, b, c and the links(a, ¢) and (b,c). We note in Lemma 1 that
the Link-Driven Minus operator can be expressed with a coabi
tion of Node-Driven Minus operator and Semi-Join operatobée
described later).

LEMMA 1. Operatoi\: can be expressed using operatoemnd
x . (Proof omitted for clarity.) O

5.3 Advanced Binary Operators

Next, we introduce more sophisticated binary operatorer®p
tor CompositionG1 © s, 7y G2 takes a directional conditiohand
a composition functiorF as parameters and produces a graph in-
duced by new links that are composed from linksdn and G>.
Input links to be composed are selected if they satisfy thecei
tional conditiond. And each new link in the output is attached with
attributes generated by the functigh The directional condition
6 consists of two link directions;=sr c|t gt andd>=src|t gt,
corresponding to links i’y and G2, respectively. E.g¢=(sr c,
t gt ) means two links are composed if and only if the source node
of the G1 link matches the target node of tki& link, where two
nodes match if and only if they have the sainte

Composition Function: Intuitively, the composition functiotF
combines the attributes of input links and generates nevbatits
for the output link produced by composition. Since there loam
variety of user-defined composition functions, we focush@their
core requirements here. First, a composition function raasépt
as input two groups of attributes (and their values) coweding
to the two input links. These attributes may be link attrésuor
node attributes. Second, a composition function must preds
output a group of uniquely named attributes (and their \&ltebe
associated with the output link. If a function satisfies bettjuire-
ments, we consider it in the class@F. Formally, the composition
operator is defined as follows (note tidgt indicates the opposite
direction ofdg,):

G = Gi1 O,7) G2, whereF is a function in the clas€F, is
defined as:

o Yu,v,l[u,v € nodesG), £ € links(G) if and only if
3¢1 € links(G1),£2 € links(Gz) s.t. u = £1.05, Nv =
ég.dd-2/\ 01.04, = Ll2.04, N L.sTc=uALitgt =]

e ({atty,atts,...} = F(l1,42) O

In contrast with composition, operator Semi-J6inx s G2, pro-
duces a subgraph a@¥; induced by theG; links that match the
links in G2. Again, links to be joined are selected if they satisfy the
directional conditiond. Both Composition and Semi-Join “con-
nect” links in their input graphs. However, composition gextes
new links while semi-join simply filters away unwanted link&s
a special case, whe; (G2) is a null graph (i.e., no links), we set
di (resp..d2) tosr c. Formally, we have:

DEFINITION6 (SEMI-JOIN). Let G; and G2 be two social
content graphs originated from the same social content Gite-
G1 xs G2 is defined as:

o V[lsrc, lige € NOdESG), L € links(Q) if and only if
£ e links(G1) A 3> € links(G2) s.t.£.04, = £2.04,]. O
EXAMPLE 4 (SEARCH). We illustrate how the search task,

“Find John’s friends who have visited travel destinatioranDen-

ver and all their activities’; can be accomplished. Given the social

content graphG and John’s node id01, we proceed as follows:

John's network iS5 = 0§, (G X (src,src) 00, (G)), WhereCy is

i d=101 and C- is type="friend’. Users who visited places near

Denver are captured byss = 0§, (G X (sgt,500) 005 (G)), Where

Cs is {type='destination’, ‘near Denvey'and C} is type='visit'.

John’s subset of friends who have visited places near Desver

thenGs = G1 X (tg,src) G2, While places near Denver that are

visited by John's friends ar€'s = G2 X (src,tgr) G1. The union

Gs = G3 U G4 puts these two together. Activities by these friends

areGg = aés(G X (src,tgt) Gi3), WhereCs istype = ‘act’. Fi-

nally, the unionG7r = G5 U G puts together John, his friends
who have visited places near Denver, the places, and thelfie
activities. [

5.4 Aggregation Operators

Aggregation is critical for most analysis tasks on socialteat
graphs including model-based methods like Latent DirichAleo-
cation (LDA) [8]. One important feature of aggregation ie ttre-
ation of new information (aggregation results) that nedsktetored
and maintained. Because of the rich structures of nodesiaks] |
we can naturally incorporate aggregation results as nebuatks.
We define two operators Node Aggregatiqtjvcgd’myf‘> (@)) and

Link Aggregation fY<Lc,att,A> (G)), whereC' is a link condition as
described in Section 5.1d=src|tgt is a directional constraint,
att is the destination attribute whose value will contain the ag
gregation result, andl is the aggregation function.

Aggregation Function: Intuitively, the aggregation function takes
as input a collection of links (and their associated attebuand
values) and produces as output a value to be associatecheitti-t
tributeat t . We focus on two classes of aggregations: (i) the class
SAF of set aggregation functions that map a set of links to a set of
scalars, and (ii) the clad§ AF of numerical aggregation functions
that map a set of links to a numerical scalar value. We fogmall
define both classes below. Note that in the following definitive
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use $x to denote a variable. Whant is a set-valued attribute of
alink ¢, the expressioi.at t = $x binds $x to one value dfat t
at atime.

DEFINITION 7 (SET AGGREGATEFUNCTIONS). Let L be a
set of links. An aggregation functiad is in classSAF if and only
if it is of the form {$z | ¢ € L& {.att = $z}, which extracts
values of the attributat t from every link in the input sef and
forms an output set of scalar valued.]

As an example, lek correspond to the set of links corresponding

to a user’s tagging actions. Leags be the attribute of these links
that contains the tags assigned to each item. The funggien|

I € L : L.tags = $x} forms the set of all distinct tags assigned

by the user to the items she has tagged.

DEFINITION 8 (NUMERICAL AGGREGATEFUNCTIONS). The
classNAF of aggregation functions is defined as follows:

e Every arithmetic operation, —, x, - isin NAF;

e The constant functior@and1 which map every scalar input
to the constand and1 respectively are iiNAF;

e Summation over a collection, i.€}, .  f(z), whereX is
a collection andf is a function INNAF, is in turn inNAF;

e Product over a collection, i.dl,cx f(z), whereX is a col-
lection andf is a function inNAF, is in turn inNAF;

e NAF is closed under composition .[]

Itis easy to see that popular aggregate functions like suioma
count, and average can be readily express®IAF. For example,
to count the number of elements in a $ét we do the following:

COUNT(X) == 3. .x 1(x). Other aggregate functions like
minimum and maximum can also be expressed, although thissdeta

of the construction is omitted here for the clarity of pretaéion.
Henceforth, we refer to the union of the clasSeSF U NAF as
simply AF.

DEFINITION 9
tent graph,yf\é,d#m’m (@) produces a social content gragh that
is isomorphic taZ andvv € G if 3¢ € GAL satisfiesC AL.d = v,
thenv.att=A({¢; € links(G) | ¢; satisfiesC' & ¢;.d =v}). O

Notice that the directionality parametéracts as a group-by at-
tribute, in that all outgoing links from a node (or all incamilinks

to a node) are grouped together and aggregated. As an example

of node aggregation, supposg L) simply counts the number of
links in L. Let the conditionC bet ype="friend’. The expression
7<1\éywc/’fnd_mt’A>(G) produces a graph that is isomorphic @&
except for every node that has one or more outgoing ‘frieimétsl

For those nodes, an attribfted_cnt is generated to store the ag-
gregate value, namely the number of friends, as computetidy t

aggregation function. Similarly, node aggregation can seduo

assign an attributeags_used to every user node, whose values

include all the tags that have been used by the user.

The definition of the Link Aggregation operator is analogtas
Node Aggregation, except for two major differences. Filistk
aggregation changes the structure of an input graph: icegla set
of links between a givesrcandtgt node by a new link. Secondly,
the result of the aggregate computation is assigned as iaatést
attribute of the newly created link.

(NODE AGGREGATION). LetG be asocial con-

DEFINITION 10 (LINK AGGREGATION). Let G be a social
content graph;yfcjatt’ 4y (G) produces a social content graph
as follows:

1. Partition{¢ | ¢ € links(G) A\¢ satisfiesC'} on{.srcand/.tgt;

2. For each set of linkg 5, sharing the same source nadand
the same target nodereplacel, ; with a new link¢s ¢;

3. Attach an attributat t with ¢, ;, with its value computed as
A(Lst).
O

As an example of link aggregation, &t be a graph containing
users and their friends, and Iét be a graph containing users and
cities that they have visited. Both these subgraphs cantbectxd
easily from an input social content graph correspondingdocial
content site, in a manner similar to that illustrated in Epéa.
Furthermore, letis be the result of composing: andG», where
the composed links contain attributg pe=‘userfriendLitem’ and
are results of composing friend links @&, and visit links inGa.
The link aggregatiowfcyvst_cmCOUNT> (Gs), whereC'is the con-
dition t ype=‘userfriend.item’, replaces each set of links sharing
the same user node and the same city node by one new link. It
then assigns an attributest _cnt to the new links, whose value is
computed by counting the numberw$er f ri end.i t emlinks
from the user node to the city noded#s.

Next, we describe a comprehensive example that represents t
collaborative filtering strategy of recommendation.

EXAMPLE 5 (COLLABORATIVE FILTERING). We show how
collaborative filteringcan be expressed for recommending travel
destinations to John. Given the social content gr&pind John’s
nodei d=101, we proceed as follows:

1. Gi— e yisitr (G X sre,sre 01i—101(G)). G1 now con-
tains user John and the places he has visited.

2. ll (— pre.:"uisit/,s’rc,vst,A(Gl)' WhereA IS a.set aggre-
gation function that collects the set of destinations tanJ
has visited and stores that as attribugd of node John.

3. Go— 0ty yizit (G Xarc,sre Tiaz01(G), finding users
other than John and the places they have visited.

4. G Vypec visit’ vt sre, 4(G2), collecting the set of des-
tinations that each user (other than John) has visited and
stores that as attributest of the user node.

5. G3 «— G1®s,7) G2, Whered = (tgt, tgt) andF is a com-
position function that computes the Jaccard similarity be-
tween user John and every other user and assigns the result
to the attributesi mon the links produced by composition.
The attributevst of each user contains the necessary infor-
mation forF to compute the Jaccard similarity between John
and other users. Notice that this step produces one link from
John to another user for every common place visited by both.
The value ofsi mon all these links is the same.

6. G4 — Vins0.5.09pe.4' (G3), WhereA' is an aggregation func-
tion that assigns the constant string value ‘match’ to the de
tination attributet ype and retains the value a&fi mfrom
any of the input link$. This step replaces each set of links
from John to another user similar to him with a weight over
0.5 by a new link witht ype=‘match’.

5Notice that this is well defined.
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type=match /~ ™\
$1 > $2
Q L 4

type=visit

id=101 type=destination

Figure 2: Example of graph pattern for collaborative filteri ng.

L N H
7. Gs Otype=‘visit’ (Gl)( tgt,srcOtype=‘destination’ (G)) This

step computes users and the destinations they have visited.

8. GG — (G4 Xtgt,src GS) @((tgt,s'rc),sim_sc,]-_’) (G5 X sre,tgt

G4). This step composes the two graphs: John and his sim-

ilarity network friends (with similarity ovef.5), and users

At the core of most social content sites, there are three majo
categories of datasite contentusers’social profiles and connec-
tions and userssite-specific social activitiegntuitively, site con-
tent is the content that users are interested in when théythés
social content site. Examples of such content include trdesti-
nations inY! Tr avel or URLsindel . i ci 0. us. Social profiles
and connections are the information regarding the usenssélwes
(e.g., name, education, etc.) and their explicit socialneations
(e.g., friends, classmates, colleagues, etc.). Finally;specific
social activities are the activities users perform on the gntent.
For example, inYy! Tr avel , users visit and browse destinations,
while indel . i ci 0. us, users bookmark URLSs with tags.

How to effectively and efficiently manage the three categgori
of data is at the heart of challenges to be addressed by the Con

and the destinations they have visited. For each of John’s tent Management layer of oSbcialScope system. As a first step

similarity network friends, who has visited a destinatian,

toward this goal, we describe and analyze three alternaiiveage-

new link is added between John and that destination. The ment models for social content sites in Section 6.1. In 8adi2,

function 7’ simply copies the value of attributd mof the
link from John to the user, on to the new link from John to

the destination node and assigns this value to the attribute

si msc.

9. G7r +— Vé,score,AVERAcE(Gﬁ)- For each destination node,

we discuss a detailed study on how the storage of large vawie
data can be optimized.

6.1 Models for Social Content Management
Logically, the social content graphs a single comprehensive

we replace the set of links from John to the destination node graph that encompasses both content and social informeglen

by one new link with an attributecor e. The value of
scor e is computed by taking the average of themsc
values on the links being aggregated.

Finally, destination nodes so obtained can be recommeraled t
John on the basis of the computedor e value. [

Often, aggregations can involve multiple links. For exaenpl
counting the number of each user’s friends who have taggedstt
five URLs with the term ‘baseball’, involves aggregation aerid
and tagging links. This leaves us with two alternativesovaithg
complex aggregation conditions likegeaph patternand therefore
using fewer aggregation steps, or using more aggregagms sind
therefore reducing the complexity of aggregation condgio

As an example, we illustrate the use of graph patterns for ex-

pressing aggregations more concisely. In the above exampgle
used link aggregation confined to aggregating over linke/ben a
pair of nodes. As a result, we first had to create links frormJoh
each destination node, one link for each similarity netwfoidnd
of John that has visited that destination (Step 6). Then vadetba
perform a separate link aggregation to compute the scoraaif e
destination being recommended to John, as the avesagesc
value of the recommending user. Graph patterns make itlgessi
to achieve these steps more concisely. Figure 2 depictph gi-
tern showing a ‘match’ link followed by a ‘visit’ link. Firstwe
compute the uniori7s U G of the graphs74, G5 in Example 5,
which contains John, his similarity network and the desitmes
they have visited. The operatof p ocore, 4 (G4 U G5), WwhereG P
is the graph pattern in Figure 2, creates a new link betweln Jo
and a destination node whenever the latter is reachable Jotm
by a match-visit link path. Only one link is created from Jdbn
the destination node, and the link is assigned an attribote e,
whose value is computed as the average valugi shsc on the
match link of the set of match-visit paths from John to theidas
tion node.

One of the research challenges we are pursuing sudy the
difference between the two approaches and identify theitonsl
under which one of the two approaches will be more effective

6. CONTENT MANAGEMENT

vant for the site. Physically, however, there are multipledeis
through which we can implement the social content graphedép
ing on how we maintain the social information.

Decentralized Model In this model, each social content site
maintains their own social information, including storitige user
profiles and social connections, and effectively managesfitire
social content graph internally. This is perhaps the mostidant
model in the early days of Web 2.0, when sites tiled . i ci 0. us
andFl i ckr were just starting, and they were all soliciting users’
profiles and social connections on their own. This led to atde-
centralized social graphs, each residing in a differeniescontent
site, and collectively forming the global social graph.

This decentralized model provides social content sitels sdme
obvious benefits, including full control over the entirealawhich
enables the site to perform comprehensive analysis on tialso
content graph, and increased exit cost on users, becauswithe
have to leave their social connections behind and re-ésitalpirob-
ably the same) connections elsewhere if they decide to susta
different site. It, however, has a couple of major problersst,
establishing a social graph with critical mass is incredidiffi-
cult. Many social content sites can only provide strong user
perience when they are able to leverage a large underlyiciglso
graph. For example, an event planning site is of no practiiaie
if few of your family and friends are using it. This presenie t
cold start problem for many content sites that few of them can
overcome. Second, social graph decentralization meassid-
essary for users to establish their social connectionspreitimes
on many different sites, even though most of those connestioe
the same. This creates unnecessary burdens on the userstarsd d
them from adopting emerging social content sites.

Closed Cartel Modet With the emergence of several dominant
social networking sites, the Closed Cartel model has becdme
able. In this model, users establish and maintain theirasqco-
files and connections at a few of the dominant social sitesletnd
those sites or third-party applications, which are devedbgpecif-
ically for those sites, fulfill their content needBacebook is the
prime example of this model. The social sites in this modkg |
in all cartels, are the biggest winners here: they maintalircbn-
trol over the social content graph and effectively deteemirhich
content users will have access to. Content sites in this hade
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Factor | Decentralized Model | Closed Cartel | Open Cartel
Users _ which site to interact wit_h'. content site social site content site
multiple same connections and profiles? yes no no
control over content yes limited yes
Content Sites control over social graph yes no limited
control over activities yes no yes
control over content no limited no
Social Sites control over social graph no yes yes
control over activities no yes limited

Table 2: A Comparison between Three Content Management Models for Sial Content Sites.

reduced to social applications, with no ability to perforomplex
analysis on the underlying social graph. More importaniigy are
also forced to adapt their user interaction experiencegmtierall
user interaction theme of the host social sites. There aventer
jor implications for users. First, users no longer have tintain
many social profiles and establish the same social conmsctib
many different sites, which is a significant improvementrave
Decentralized Model. Second, however, they are forced ¥e ha
central online social presence, without which they wonéretiave
access to the contents otherwise would have been availalters
tent sites.

Open Cartel Model: The Open Cartel model is an integration
between the Decentralized and Closed Cartel models. Imthikel,
a few dominant social sites still maintain the social prsfitend
connections. However, through open standards, individoaient
sites are allowed to retrieve social information from thegiven
users’ permission, and integrate it with the content theyigle on
their own sites. Furthermore, content sites are allowedopa
gate social profiles and connections established on theirsites
back to the social sites. Given this open access and degendin
their levels of expertise, the content sites can now opénaiee of
the three levels. The simplest content sites can choosddgate
the management of both activities generated on their sifettzm
social connections to the social sites. More sophisticatedent
sites can manage user activities on their own and simplyaely
social sites to provide the social graph. Even more sophisti
content sites can maintain their own social graphs and Kesp t
in sync with the social sites. These social graphs can bedemesl
as focused views on the underlying global social graph. Tie i
plications for users are three-fold. First, similar to tHese Cartel
model, there is no need for users to repeat their profiles and c
nections at many different places. Second, users will havépte
points of interaction where they can consume content paiieye
their social profiles and connections. Finally, user exp®e can
be fully customized instead of conforming to the look and fide
the social sites.

Discussion A summary of the comparison between the three
models is listed in Table 2. While it is relatively clear thié De-
centralized Model is being replaced by the Cartel modelsdvi®
still out on which Cartel model will eventually come out orpto
The core issue here is control over the content and socimi-act
ties. In the Closed Cartel model, content sites delegatentme
agement of social activities and the presentation of caritethe
social sites and essentially become applications thatagsunvive
without the host social site. In the Open Cartel model, $coid
content sites create symbiosis relationships, where Issitéa pro-
vide valuable information to enhance user experience oteabn
sites, and content sites in turn realize the value of theabgcaphs
on social sites and expand them by providing users with usefu
tents and engaging them in interesting activities. It ishmlref that
small niche content sites (e.g., your neighborhood reagingp)
will prefer the Closed Cartel model for ease of managemelnilew

larger content sites (e.g., New York Times a¥idTr avel ) would
prefer the Open Cartel model.

6.2 Activity-Driven Data Management

A good understanding of social connections and activiteas ¢
help cluster users and their associated contents in waysvthad
improve the data access performance. We briefly discuss feow w
can leverage those to cluster users for better query priogess

Consider a social content site similardel . i ci 0. us, where
users connect with other users and tag items with tagsZ/Lie¢
the set of user nodes. Giveruac U, we useitemns(u) to denote
items tagged by, network(u) to denote users connected 4o
andtaggers(i, k) to denote users who tagged itémwith tag .

Queries and Scoresfor this study, we are interested in keyword-
only queriesQ., = ki, ..., kn. We first define the score of an item
i for useru and a keywordz;, scorey, (i, u) = f(network(u) N
taggers(i, k;), wheref is a monotone function. We further define
the overall score of an itemfor a user query)., asscore(i,u) =
g(scoreg, (i,u), ..., scoreg, (i, u)), whereg is a monotone aggre-
gate function. While the framework is general enough to jterm
arbitrary monotone functiong andg, we will use f = count and
g = sum, for ease of exposition.

Indices: Typically, in Information Retrieval, one inverted list in-
dex is created for each keyword [6]. Each entry in the listaims
the identifier of a document along with its score for that keyav
Storing scores allows to sort entries in the inverted listéby en-
abling top# pruning [16]. While in classic IR each document has a
unique score for a keyword (e.qg., tf*idf [6] or probabilisfiL8]), in
our problem, the score of an item for a tag depends on the nletwo
of the usewhois asking the query.

One straightforward adaptation to our framework is to store
inverted list pen(tag, user)pair and sort items in each list accord-
ing to their scores for the tag and user. We denote such ax inde
by I L}, which contains entries of the for(a, scorey (i, u)). Each
item will be replicated along with its score in eafthg,user)in-
verted list. At query time, items scores can be aggregatssssic
all inverted lists relevant to query keywords. However, sidar
a moderately sized [19] social content site withD, 000 users,1
million items, and1000 distinct tags. If on average each item re-
ceives20 tags which are given b§% of the users, the size of the
index would be approximately terabyte, assuming0 bytes per
index entry. This kind of space requirement can easily becpro-
hibitive as the network and tagging activity expand.

Clustering: In [5], we explored user clustering strategies which
achieve different compromises between storage space andgs
ing time. Here, we formalize these strategies and expand the
ther. The intuitive idea is to cluster users according tkeicial
connections and activities such that score estimationdbeatone
accurately without blowing up the index size. There aredimain
strategiesnetwork-basegbehavior-base@dndhybrid.

Given a clusterC’, the score of an item in an index/L¢, is

CIDR Perspectives 2009



computed as the upper-bound of scoresfof each user, € C:
1)

By storing score upper-bounds, téppruning algorithms can
still be used. However, score upper-bounds entail havingpto-
pute exact scores at query time for a specific user. This ctatipo
introduces some processing overhead compared with thighgtra
forward approach, where exact scores are stored for(éaguser)
pair. To better understand this, we formalize the differesgr clus-
tering methods.

scorey (i, C) = mazuecscorex(i, u)

DEFINITION 11 (NETWORK-BASED CLUSTER). TWO USers:;
andu» belong to the same network-based cluster if and only if the
following predicate is true:

|network(ui) N network(uz)| >0

|network(ui) U network(uz)| @
whered is an application-defined threshold. Two users fall into the
same network-based cluster if their networks are similaugh.
Given that item scores depend on user networks, it is nataral
assume that an item would have a similar score for two useosevh
networks overlap substantially. Each user falls into alsictuster
and an inverted list is created for each cluster, insteaddcif eser.

In [5], we explored the space/time compromise of networkelda
clustering and showed that it consumes less space than $he ba
strategy without incurring too much query processing ogath
The applicability of network-based clustering to largetwiaks,
obtained by integrating different social graphs, is thgesttof fu-
ture research.

Unfortunately, network-based clustering may have poofoper
mance in the following scenario. Assume a usewhose network
contains usersi, va, ..., v20 andwai, ..., v25. Assume another user
uz Whose network contains; , v, ..., v20 and thatu; andus end
up in the same cluster. However, if most of the tagging astion
come from users ima1, ..., v2s, item scores for; andus would
be very different. Clustering; anduz would not be beneficial
and would in fact incur unnecessary processing overheadsezo
quently, we further explored behavior-based clustering.

DEFINITION 12 (BEHAVIOR-BASED CLUSTER). Two USErsi;
andus belong to the same behavior-based cluster if and only if the
following predicate is true:

litems(u1) Nitems(uz)
litems(u1) U itemns(uz)

20 ®

Here, two users belong to the same cluster if their tagging be
havior is similar. In this case, the network members of a user
may belong to multiple clusters. Therefore, at query tinaep-
tially more clusters will be considered than in the netwbdsed
clustering strategy. In [5], we showed that behavior-badester-
ing achieves better processing time to the expense of spaer w
compared to network-based clustering.

Ideally, one would want to combine the benefits of network-
based and behavior-based clustering. We define hybridecingt
where two users fall into the same cluster if members of thetr
work tag similarly. Here, we give the definition of a hybridister:
exploring the benefits of this strategy is the subject ofrituork.

DEFINITION 13  (HYBRID CLUSTER). Two usersu; and us
belong to the same hybrid cluster if and only if the followjgd-
icate is true:

|items(v1) Nitems(ve)
|items(v1) U items(vz)

:29 (@)

for all usersvy € network(ui) andvs € network(uz)

Further Discussion We explored users’ social connections and
behaviors to answer a very simple kind of information disgv
query: keyword-only queries. However, those social infation
can potentially be leveraged in many other fashions, inofyiduid-
ing information synchronization decisions from remoteiaksites.
For example, a user who is highly connected may require nnere f
guent synchronization of his network from social sites. @aeel-
opment of a framework to guide data storage and synchraéotzat
decisions based on users’ social connections and acsivétian in-
teresting research field needs to be explored further.

7. INFORMATION PRESENTATION

Supporting effective user interactions in social contegssis
not only a matter of locating relevant results for the usat,diso
identifying the right presentation of results. The rightgentation
can help a user explore the information more effectivelyeerlly
when she is not sure about exactly what she wants, whiches oft
the case, as we learned from thieTr avel queries. Our vision
for the Information Presentation layer is to buddiynamic result
exploration framework

In search, presentation is primarily in the form of a singleked
list of results, where a result's rank reflects its degreest#fvance
to the input query. In recommender systems, presentatiam iis-
portant aspect and has direct implications on building sideust
and giving them incentives to participate in more actigi{i24, 28].
There are many interesting new challenges in informatiesgmta-
tion, including those that are related to user interfacégtedere,
we focus mainly on result grouping, and providing explasraifor
results and groups.

7.1 Grouping Items

Given a set of itemd, which have been computed for a user
and a query, there are many different mechanisms for grgupin
itemsinig, : Social Groupingwhich defines item groups based on
similarity or closeness between users who endorsed the;itap-
ical Grouping which defines item groups using the abstract topics
each item belongs t&tructural Groupingwhich relies on similar-
ity in items’ attributes. A key algorithmic challengettse dynamic
discovery of groupgiven a query result sdt,,,. We provide here
a formal definition of social grouping.

DEFINITION 14 (SoclAL GROUPING). Two itemsi; andis
belong to the same social group if and only if the followingdtir
cate is true:

[taggers(i1) Ntaggers(iz)
[taggers(i1) U taggers(iz)

e (5)
whered is an application-specific threshold. The groups defined
above are user-independent and could be pre-processedn &Vhe
query result g, is computed, the task is to partition it into a set of
meaningfulgroups. Group meaningfulness can be defined using a
combination of the following criteria. Firstiptal number of groups
Due to real estate on a page, the number of groups to dispkay at
time needs to be restricted. Secogehup quality which is defined
using the relevance of items in the group. Finakgup sizewhich
is simply the number of items in the group.

Since screen real estate is limited, an interesting pratenal
alternative is to present the groups hierarchically, inéially present
a small number of groups appropriate for the screen areaor u
request divide a group that the user is interested in intgrawips.
Devising a grouping mechanism that dynamically adjustk méiom-
in and zoom-out requests is a promising presentation mbde! t
needs to further explored.
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7.2 Explanations

Another challenge is to provide explanations on the resuits
descriptions of the groups. Unlike in web search, resuttsfinfor-
mation discovery on social content sites are often enddrgether
users or are connected to other interesting objects, hare Eexists
a so-calledsocial provenanceletting users be aware of the social
provenance often allows them to make more informed deasasn
to what to do with the results. Similarly, providing destigps on
result groups can help them better understand the sembetiasd
those groups and therefore make better choices on what torexp
further.

Much of the emphasis was on querying graphs using regular pat
expressions over edge labels. Such expressions are tog-heav
weight for our applications. Finally, in the context of otfj@riented
databases, the GOOD data model and query language were devel
oped by Paredaens et al. [20]. A key distinction betweenily
every paper on graph querying and our work is that we do not ex-
pect the user to interact with the system using our queryuage.
In addition, none of these previous works considers thgraten
of search, querying, and recommendation.

Indeed, while search and recommendation have been investi-
gated separately, their combination has received vetg Gften-

An explanation for a recommended item depends on the under-tion, with perhaps the only exception in [15], where the atsh

lying recommendation strategy used [30]. If an iténs recom-
mended to usen by a content-based strategy, theneaaplanation
for recommendation is defined as:

Expl (u,i) = {i' € T | ItemSim(i,7’) > 0 & i’ € Ttems(u)}
i.e., the set of items similar to itemg’) that useru has rated
in the past. The explanation may contain more informatiochsu
as the similarity weightTtemSim(i,i’) x rating(u,i’). Here,
ItemSim(Z,’) returns a measure of similarity between two iteims
andi’, andrating(u,s’) indicates the rating of itenf by useru
(itis 0 if u has not rated’).

If an item: is recommended to userby a collaborative filtering
strategy, then aexplanationfor a recommendationis:

Expl (u,i) = {v € U | UserSim(u,u') >0 & i € Items(u')}
i.e., the set of users similar towho have rated item Similarly to
item-based explanations, we can augment eachuisethe expla-
nation with the similarity weightserSim(u, v’) X rating(u’, 7).
Here,UserSim(u, ') returns a measure of similarity or connectiv-
ity between two userg andv’ (itis 0 if w andu’ are not connected).

In all cases, the explanation of a recommendation is eitlset a
of items or a set of users, possibly together with weightseas d
scribed above. Given an item explanation, there are margepre
tation alternatives. The most straightforward option idisbthe
set of users or items in the explanation of each item. Ancther
ternative is to return aggregate information such as: “6@%oar
friends endorsed this item” or “This item is similar to 75%teims
you visited before”. The challenge is when and how to geeerat
those aggregation information efficiently.

We can also defingroup explanationExpl (u, g), as an aggre-
gation over individual item explanations in the group. Hoareit
is more intriguing to explore how we can effectively conviedi-
vidual explanations for items in a group into a concise exgli@n
at a group level.

8. RELATED WORK

studied the effectiveness of scoring functions in both deand
recommendation. Another closely related work [26], whiahk d
veloped OLAP-style algorithms to answer social queriehag
returning all the tags of a given user. Neither paper addeseti®e
challenges of social content analysis, which is substntiaore
complex than queries.

Several approaches have been developed in the context of Web
search result presentation. The approach in [25] is basellister-
ing results into groups of related topics. Gravano and DgkRa
describe a hybrid method for summarizing online news aicl
which leverages pre-computation in order to efficiently poie
document clusters, at query time. By contrast, our studydes
on result exploration through social, structural and tapgroup-
ings. In [22], the authors propose a presentation layer profa
relational database in order to improve its usability, sstieg the
importance of provenance. While the idea of presentatiaoiis-
mon to ours, their focus is not on information discovery aagial
content sites.

Finally, faceted search [14, 7] supports richer infornatitis-
covery tasks over structured data. However, it mainly fesusn
exposing hidden data correlations and providing aggregauets
along with each facet. It will be interesting to explore ifcsd
provenance can be considered with the faceted search fraaew

9. CONCLUSION

We envision that domain-specific social content sites wl i
creasingly become a part of the our online life. We motivated
formation discovery over such (real or virtual) social eomtsites
and identified several major challenges. In particular, voppsed
SocialScope, a logical architecture with three layers: Information
Discovery, Content Management and Information Presemtat/e
discussed key issues and contributions in each layer.

In the context of Information Discovery, we proposed an alge
braic framework to manipulate social content graphs. Tobtbet

In a series of works, Mendelzon et al. [12, 11, 10] proposed of our knowledge, our algebra is the first one that is capatheso

query languages for manipulating graphs. The language [12]

nipulating social content graph in a uniform and flexible way

was proposed as a complementary language for Datalog, for ex the context of Content Management, we identified three maitin c

pressing recursive queries using visual concepts. Léter,was

egories of data within social content sites: site contentiad pro-

extended intd7y+ [11], a hypergraph-based visualization and query{iles and connections, and site-specific social activitis.exam-

ing language. In [10], additional primitives were addedupsort
aggregation over edges as well as paths, without explicitreson,
but using transitive closure as a primitive. Amann and Sdddl
proposed the Gram model and language for querying hypetaeat
modeled as graphs. The language includes limited supporéfo
cursion. All of these languages, however, use graph pattexn
tensively within their queries. This is in contrast to ougebraic
approach, which relies on a set of operators that manipuotades
and links.

In the context of semi-structured data, substantial woskbeen
done on graph querying (e.g., Strugl [17], UnQL [9], and L§tH.

ined three alternative content management models, eactedddy
how they management the three categories of data, and cedhpar
their benefits and drawbacks. We also discussed how to tpwera
common user behaviors to optimize data storage and indéaing
query processing. Finally, in the context of Informatiore§am-
tation, we discussed how novel ways of presenting inforomatid
users can help them understand the large variety of conisrivd
ered from social content sites.

We believe thatocialScope offers a framework in which key
challenges in data management in social content sites ca-be
dressed by our research community.
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