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ABSTRACT
Recently, many content sites have started encouraging their users to
engage in social activities such as adding buddies on Yahoo!Travel
and sharing articles with their friends on New York Times. This has
led to the emergence ofsocial content sites, which is being facili-
tated by initiatives like OpenID1 and OpenSocial2. These commu-
nity standards enable the open access to users’ social profiles and
connections by individual content sites and are bringing content-
oriented sites and social networking sites ever closer. Theinte-
gration of content and social information raises new challenges for
information management and discoveryover such sites. We pro-
pose a logical architecture, namedSocialScope, consisting of three
layers, for tackling the challenges. Thecontent managementlayer
is responsible for integrating, maintaining and physically accessing
the content and social data. Theinformation discoverylayer takes
care of analyzing content to derive interesting new information, and
interpreting and processing the user’s information need toidentify
relevant information. Finally, theinformation presentationlayer
explores the discovered information and helps users betterunder-
stand it in a principled way. We describe the challenges in each
layer and propose solutions for some of those challenges. Inpar-
ticular, we propose a uniform algebraic framework, which can be
leveraged to uniformly and flexibly specify many of the informa-
tion discovery and analysis tasks and provide the foundation for the
optimization of those tasks.

1. INTRODUCTION
Web 2.0 is leading to an increasing integration of content infor-

mation with the social information (profiles, connections and activ-
ities) of users, giving rise tosocial content sites. Sites like Flickr
and del.icio.us started out as such sites by enabling users to tag and
share contents like photos and bookmarks. More recently, however,
sites that started as pure content oriented or pure social network-
ing focused are increasingly marching toward such an integration.
For example, content sites like Amazon and Yahoo!Travel arebe-

1http://www.openid.net/
2http://www.opensocial.org/
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coming more social: users can now become friends, share content
with each other, and tag the content with their own descriptions.
Similarly, social sites like MySpace and Facebook are adding more
content: users can add contents like photos and news items totheir
personal spaces, making the site more practically useful intheir
daily lives.

We envision this integration of social sites and content sites to be
greatly helped by initiatives like OpenID and OpenSocial. They can
now collaborate with each other to formvirtual social content sites,
where the social sites manage the user’s social life and the content
sites manage the detailed content information. We are already wit-
nessing this in many domains. For example, on most online news
sites (e.g., New York Times), each article is accompanied bybut-
tons corresponding to Facebook, del.icio.us, etc., which allow you
to quickly post the article to your favorite social site and share it
with friends. Together, the social site(s) and the content site form a
powerful virtual social content site that can engage a larger number
of users much more deeply than each individual site.

Another important trend is theincreasing structural richness of
informationabout the users and the content. On one hand, social
sites are knowing more about us through the rich informationwe
voluntarily provide (e.g., name, interests, etc.). On the other hand,
content sites are generating more structured information as a result
of advances in information extraction and wiki-style mass collab-
orations. Only a few years ago, almost all the Wikipedia pages
were pure text articles. Now, nearly all of the highly visited ones
contain some structured information (e.g., Infoboxes) andare orga-
nized within a set of loosely defined category hierarchies.

The ways in which those sites help their users discover infor-
mation, however, have evolved little from the traditional keyword-
based search paradigm. The rapidly growing social graphs under-
lying those social content sites are rarely leveraged to better serve
the user’s information needs. There is still a dichotomy between
information retrieval, which focuses on locating information that
is semantically relevant to a user query, and information recom-
mendation, which focuses on identifying information a usermight
prefer based on her social profile activities and those of herso-
cial connections. Finally, results are still ranked and presented in a
predominantly list-based fashion, not taking advantage ofthe rich
structure and social provenance embedded in them.

In this paper, we identify the research challenges and opportuni-
ties associated with managing and discovering informationon so-
cial content sites. We present an architectural vision,SocialScope,
as a platform where those challenges can be addressed. But first,
we provide some motivating examples in the context of a real-world
social content site, Yahoo!Travel.
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general categorical
specific

(e.g., things to do) (e.g., family)
with locations 32.36% 22.52%

8.37%
w/o locations 21.38% 5.34%

Table 1: Summary Statistics of 10 Million Y!Travel Queries.

2. CASE STUDY WITH YAHOO! TRAVEL
Y!Travel3 is a typical content site that is gradually evolving

into a social content site. Initially built as a portal on travel desti-
nations, it has been incorporating various social featuresincluding
allowing users to tag travel destination and showing them similar
travelers. It has also been interacting withY!Local andFlickr
to provide more structured information and social data about des-
tinations. These days, users visitY!Travel to look for informa-
tion about travel destinations as well as to learn about their friends
and other travelers. We briefly describe the data and queriesin
Y!Travel.

Y!Travel Data : Y!Travel maintains a comprehensive set of
travel objects: cities, restaurants, etc., each with its own structure.
Various semantic links are established between objects. For exam-
ple, Fisherman’s Wharf and San Francisco are connected through
geographical containment. Users onY!Travel provide detailed
information about themselves, including self-tags, interests, etc.,
and they are also connected in various ways. For example, they can
be friends onFlickr or contacts on the Instant Messenger net-
work. Finally, users browse travel objects, tag them with keywords,
and provide ratings and reviews on them, creating connections be-
tween users and objects.

Y!Travel Queries: Users interact withY!Travel through a
search interface, where they enter a set of keywords and obtain a
list of travel objects considered relevant to their queries. We con-
ducted a comprehensive analysis on 10 million recentY!Travel
queries to better understand the user behavior. The resultsare sum-
marized in Table 1. By leveraging the domain knowledge we have
about geographical locations and travel destinations, we detect lo-
cation terms in queries and classify each query into three classes:
general, categorical, and specific.4 General queries are those con-
taining terms like “things to do”, “attraction”, or just a location by
itself. Over 50% of the queries fall into this class, and about 60% of
those queries contain a location. Categorical queries refer to those
containing terms like “hotel”, “family”, “historic”, etc.About 30%
of the queries fall into this class and a majority of them mention a
location. Finally, there are also about 8% of the queries looking for
specific destinations like “Disneyland” and “Yosemite Park”.

The distributions ofY!Travel queries indicate that the main
information needs of users are not specific destinations, but rather
the set ofinterestingdestinations among a large group that are
loosely constrained by the general or categorical queries.This is in
contrast with web search engines, where users are mostly search-
ing for specific information. As a result, the search paradigm is a
poor fit forY!Travel because it is inherently hard to discriminate
among a large group of results based purely on the query keywords.
For example, almost all destinations inY!Travel areattractions.
To address this problem,Y!Travel manually creates guides of
“things to do”, “hotels”, and “restaurants” for popular destinations,
which are extensively browsed by users. However, it is impossible
to manually create the “right” guide for each user on all destinations
and queries. A new information discovery paradigm is therefore
needed forY!Travel and other similar social content sites. In
the rest of this section, we describe our vision of this new paradigm

3http://travel.yahoo.com/
4There are about 10% of the queries that we were unable to classify.

through three hypothetical examples involvingY!Travel that are
synthesized from our extensive conversations with actual users.

2.1 Motivating Examples
EXAMPLE 1. John is in Denver for a conference. Having one

day free, he visitsY!Travel and searches for “Denver attrac-
tions”. John has in the past visited quite a few baseball fields on
Y!Travel and has many friends onFacebook with interests in
“baseball”. With this knowledge,Y!Travel recommends to him
“B’s Ballpark Museum” (a small baseball museum in the suburb),
“Coors Field” (home field of the Rockies), as well as the upcoming
baseball game “Yankees vs Rockies” to be played at Coors Field,
which is fetched fromY!Sports.

Example 1 represents one out of three queries onY!Travel.
However, the traditional information retrieval approach fails for it
because there are often many objects that are semantically rele-
vant to John’s query and no ranking mechanism (e.g., tf-idf mea-
sure) based on puresemantic relevancecan differentiate them. It is
therefore imperative for the system to incorporatesocial relevance,
which considers John’s social profile and connections, to decide
which attractions he will prefer. Essentially, information discov-
ery on social content sites requires the integration of two major
paradigms: semantic relevance with respect to a query and social
relevance in the spirit of recommendations. The former scopes the
discovery to information relevant to John’s current needs as ex-
pressed by him, while the latter identifies the information most ap-
pealing to John as a user. Indeed, “B’s Ballpark Museum” may not
be a major attraction, yet John, being a baseball fan, is likely to
enjoy a visit to it. Example 1 further illustrates another important
desideratum: the need toretrieve relevant information from exter-
nal social or content sitesthat are physically and administratively
separate fromY!Travel, which is becoming possible because of
various initiatives like OpenSocial.

EXAMPLE 2. Selma, a young musician with two babies, is plan-
ning a family trip to Barcelona. She searches for “Barcelonafamily
trip with babies” onY!Travel. As in John’s case,Y!Travel
searches for attractions that are semantically and socially relevant
to Selma. While Selma is well-connected to her musician friends,
very few of them have kids and are suitable for trip recommenda-
tion to Selma in this case. Instead,Y!Travel analyzes her other
friends who have made similar family trips before and uses them
as the social basis for recommending baby-friendly attractions like
the “Parc de la Ciutadella”.

Selma’s example illustrates the importance ofanalyzing the so-
cial connections of usersand choosing the right subset of the con-
nections as the basis for discovering socially-relevant results. Un-
like in John’s case,Y!Travel has to understand the distinct groups
of friends that Selma has and pick the right group for her family ori-
ented query. This analysis, however, is non-trivial since the nature
of social activities and connections are often implicit andnoisy.
Determining whether a social connection is suitable for answering
a particular query is a significant challenge for a social content site
and may even require an interaction with the user. Furthermore,
it is not always possible or necessary to “personalize” social rele-
vances. Even if Selma does not have any friend with young babies,
Y!Travel should still be able identify a group of “experts” on
the topic to help answer Selma’s query. This would require exten-
sive data analysis to identify topics within the data and users with
expertise on the topics.

EXAMPLE 3. Alexia is a high school student planning a sum-
mer field trip for an assignment from her history class. She comes
to Y!Travel and searches for “American history” to find places
for research on the subject. As in previous examples,Y!Travel
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Figure 1: Architecture of SocialScope.

leverages Alexia’s social information and finds a set of semantically
and socially relevant places. However, the results this time con-
tain places from throughout the country and fall into many different
topics. Recognizing the chaotic nature of the results,Y!Travel
moves away from the traditional list-based presentation, and auto-
matically groups results along multiple dimensions: geographical
or organized based on who—her classmates in the history class or
her friends on the soccer team—endorse it. Furthermore,Y!Travel
analyzes the result destinations and present related topics (e.g., In-
dependence War) and users (e.g., Jane, who left comments on many
result destinations) to Alexia.

Example 3 illustrates another important aspect in information
discovery on social content sites:result presentation. Similar to
Alexia’s case, there can be many equally relevant (semantically and
socially) results to a user and her query, and alternative presenta-
tion mechanisms need to be employed for the users to effectively
explore the results. For example, grouping can be accomplished
based on the rich structure information associated with each object
in a way similar to faceted search. More interestingly, in social
content sites, each result also has an associated social provenance
that can be explored for more sophisticated grouping. Furthermore,
users like Alexia are often not just specifically looking forobjects:
they are also interested in exploring other information (e.g., sim-
ilar users and associated topics) related to their information need.
Y!Travel needs to detect when such explorations are warranted
and how to facilitate them.

2.2 Insights from the Examples
As all three examples have emphasized, effective social content

discovery calls for anintegration of three major paradigms: key-
word search, database-style querying, and recommendations. The
search/query paradigm helps users express their need and narrow
down the discovery scope, while the recommendation paradigm en-
ables the system to guide and expand the discovery process socially.
The fact that social and semantic relevances play an equallyimpor-
tant role distinguishes this frompersonalized search[21], where
personalization is achieved by re-ranking semantically relevant re-
sults in a post-processing step.

Second,the social information on social content sites are much
more complexthan in traditional recommendation systems [24]. In-
stead of being characterized simply by what items they have read
or bought previously, users can participate in various social activi-
ties and establish connections with different semantics. These con-
nections need to be analyzed and selectively applied to helpthe
discovery process.

Finally, the fact that most user queries are exploratory in na-
ture calls foreffective ways to present the resultsto facilitate in-
formation exploration. While faceted search [14] has made strides
in helping users explore query results, it does not account for so-
cial provenances. Discovering the most effective groupings, either
based on structural attributes or on social relevance, is a significant
new challenge.

3. ARCHITECTURAL VISION
Figure 1 describes the logical architecture ofSocialScope. At

its core is thesocial content graph, which represents users, objects,
and various connections among them. Information in the graph
may belocally owned(e.g., destinations inY!Travel), externally
integrated(e.g., friendship connection obtained fromFacebook)
or derived(e.g., links describing similarities between users). Three
layers, Content Management, Information Discovery, and Infor-
mation Presentation, form the entireSocialScope system, and we
briefly describe each next.

Information Discovery (Section 5): This layer consists of two
components:Content Analyzerand Information Discoverer. The
Content Analyzer derives new nodes (e.g., topics) and links(e.g.,
similarities between users) through various analyses (e.g., Latent
Dirichlet Allocation [8], association rule mining [3]) of the raw so-
cial content graph in an off-line fashion. Those analyses can be
specified and triggered automatically by the system itself or by a
Social Content Administrator. The Information Discoverer parses
the user query, constructs its internal representations (based on var-
ious semantic and social relevance computations), and evaluates
them on the social content graph. The result is a social content sub-
graph, calledMeaningful Social Graph(MSG), that is semantically
and socially relevant to a given user and query. One major vision
of SocialScope is to enableuniform manipulation of social content
graphs, leading to declarative, flexible, and optimizable graph anal-
ysis and information discovery processes. We accomplish this by
proposing a logical algebraic framework for social contentgraph
manipulation.

Content Management(Section 6): This layer handles two main
tasks. First, it facilitates the incorporation of social information
from remote sites throughContent Integrator. This has become
increasingly important as open standards like OpenSocial become
widely accepted, which allow the core social content sites to lever-
age the large amount of information within social sites. Thesec-
ond task is the maintenance and retrieval of the social content graph
through theData Manager, which abstracts away the physical im-
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plementation of the graph. In addition, given that much social con-
tent is created and maintained externally, Data Manager needs to
make decisions on when and how to refresh parts of the social graph
efficiently. TheActivity Managerhelps in that regard by categoriz-
ing users based on their activities.

Information Presentation (Section 7): This layer provides a
comprehensive result exploration framework. It admits as input the
MSG from the Information Discovery layer and dynamically or-
ganizes the results for effective exploration by the user. There are
two key primitives: grouping and ranking, managed by Information
Organizer and Result Selector, respectively. The former identifies
appropriate (structural or social) criteria for grouping results, while
the latter identifies appropriate mechanisms for ranking and select-
ing results within or across groups. When multiple presentation
groups are available, Information Organizer also makes decisions
on which group is more relevant to the user and her current infor-
mation needs.

Let’s begin by introducing the data and query models adoptedby
SocialScope.

4. DATA AND QUERY MODEL
Nodes and Links: We adopt a graph model for representing so-

cial content. Intuitively, nodes in the graph representphysical and
abstract entitieslike users and topics, and links representconnec-
tions and activitiesbetween entities such as friendship and tagging
actions. Each node or link has a uniqueid. It is worth noting that
the graph model described here is a logical model that is not tied to
any specific physical implementation.

Nodes and links contain structural attributes, including amanda-
tory type attribute. We adopt a flexible (i.e., schema-less) typing
system and allow thetype attribute to have multiple values. For
example: n1 = {id=1; type=‘user, traveler’; name=‘John’} and
n2 = {id=2; type=‘item, city’; name=‘Denver’; keywords=‘skiing’}
are two nodes representing our traveler John and the city Den-
ver, respectively, in Example 1. Similarly,l12(n1, n2) = {id=12;
type=‘act, tag’; date=‘2008-8-2’; tags=‘rockies baseball’ } is a link
recording the activity that John tagged Denver with tags ‘rockies
baseball’. Our typing system gives us the flexibility of creating
new types through content analysis. We also maintain an evolving
catalog of basic types, includinguser, item, topic, group for
nodes andconnect (e.g., friend),act (e.g., tag, review, click,
etc.),match, belong for links. Those basic types are adequate
for modeling most of the social content sites we have encountered.

Social Content Graphs: We model an instance of a social con-
tent site as asocial content graph. A social content graph con-
sists of nodes and links as described above. It is sometimes conve-
nient to view the social content graph as an overlay of sub-graphs,
namely theactivity graph, which maintains users’ activities on items,
the network graph, which maintains social connections, and the
topical graph, which maintains links from users or items to derived
semantic groups or topics.

Queries: Users interact withSocialScope by specifying a (pos-
sibly empty) query on content and structure5. Structural predicates
are interpreted in the usual Boolean sense, while content condi-
tions are used to compute semantic relevance which, combined
with social relevance, results in a single relevance score.The sys-
tem generates recommendations within the scope defined by the
query, treating the structural predicates as the constraints defin-
ing the scope. When the structural predicates are absent in the
query, only semantic relevance and social relevance are taken into

5Here and elsewhere, the term structure refers to the attribute/value
pairs associated with nodes and links.

account. And when a query is empty, only social relevance is ac-
counted for.

5. INFORMATION DISCOVERY:
AN ALGEBRAIC FRAMEWORK

Developingan efficient and flexible mechanism to manipulate
the social content graphis a major goal of the Information Dis-
covery layer. While social network graphs have been the subject
of a number of social network analyses [23, 27, 29] and socialac-
tivity graphs have been leveraged in various recommendation algo-
rithms [2, 24], most of those works are designed for simple graphs
(i.e., no complex structures on nodes or links) and adopt ad-hoc
methods. This leaves the system with few opportunities for reuse,
customization and optimization. Furthermore, while searching for
objects based on content relevance has been extensively studied be-
fore, it has never been integrated into a social context in a principled
way. We believe a uniform algebraic framework is needed to ma-
nipulate the kind of complex social content graphs we encounter in
social content sites and to provide flexibility in the mannerin which
information is analyzed and discovered.

We thus propose a logical algebra that is capable of expressing
sophisticated tasks for data analysis and discovering socially and
semantically relevant results. Each operator in the algebra takes
social content graphs as input and outputs a social content graph. In
the next section, we present our algebra formally and demonstrate
the expressive power of the algebra by showing a comprehensive
set of tasks that can be expressed in the algebra.

5.1 Unary Operators
At the core of the algebra are two unary selection operators:

Node Selection (σN
〈C,S〉) and Link Selection (σL

〈C,S〉). Both op-
erators take a conditionC and an optional scoring functionS as
parameters, and a (social content) graph as input. The condition C

consists of a list of structural conditions (e.g.,{type=‘city’, rating
≥‘0.5’}) and a set of keywords (e.g., ‘Denver attraction’). Satisfac-
tion of the structural conditions by a node is defined in the obvious
manner: a nodev is said to satisfy a structural condition of the form
att=val1, ..., valk, if the set ofv’s values foratt is a superset of
the values{val1, ..., valk}. When an optional scoring functionS
is specified as an input parameter, a score is generated usingS for
each node based on how well its content matches the keywords in
C. If no scoring function is specified, butC includes keywords, a
default scoring function is used for generating the score. Finally,
Node Selection outputs a null graph consisting of nodes (andno
links) of the input graph that satisfy the node conditionC. And a
score is generated (byS) and attached to each node in the output
graph. More formally:

DEFINITION 1 (NODE SELECTION). σN
〈C,S〉(G) =

{v, v.score = S(v) | v ∈ nodes(G) ∧ v satisfiesC}.
Link Selection is defined in an analogous manner, with the same

format specification and satisfaction definition for condition C. Link
Selection outputs a subgraph of the input graph induced by those
links satisfying the selection conditionC. And a score is generated
by the optional scoring functionS and attached to each link within
the output graph. More formally:

DEFINITION 2 (LINK SELECTION). σL
〈C,S〉(G) =

{`, `.score = S(`) | ` ∈ links(G) ∧ ` satisfiesC}.
Note that in the examples that will follow, we often omit the

scoring function for clarity.

5.2 Basic Binary Operators
Also in the core framework are the binary set operators. We

define the three common operators, Intersection (∩), Union (∪),
Minus (\), as follows:
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DEFINITION 3 (SET-THEORETIC OPERATORS). Let G1 and
G2 be two social content graphs originated from the same social
content site. G1 ∪ G2, G1 ∩ G2, andG1 \ G2 are defined as:
nodes(G1 ⊕ G2) = nodes(G1) ⊕ nodes(G2) and links(G1 ⊕
G2) = links(G1) ⊕ links(G2), where⊕ is one of∪,∩, \, and
nodes and links with the sameid are consolidated in the output
graph.

As an example, a link belongs toG1 \ G2 if and only if it is in
G1 but not inG2. Note that a link inG1 \ G2 must necessarily be
incident on nodes which appear inG1 but not inG2.

Remarks: First, in all the definitions above, nodes and links are
matched on the basis of theirid, as a result, graph isomorphism
is not an issue. Second, we note that the operator\ can be defined
in more than one way. According to the definition above,G1 \G2

is the subgraph ofG1 induced by those nodes ofG1 which are not
present inG2. Thus, all links inG1 \G2 are necessarily those for
which both endpoints are present inG1 but not inG2. We call this
the Node-Driven Minusoperator. Below, we give an alternative,
link-driven, definition of the Minus operator, denoted ‘\·’.

DEFINITION 4 (LINK -DRIVEN M INUS). Let G1 and G2 be
two social content graphs originated from the same social content
site.G1\·G2 is defined as:links(G1\·G2) = links(G1)\links(G2);
nodes(G1\·G2) consists precisely of those nodes which are in-
duced by the set of links inlinks(G1\·G2).

As an example of the difference between Node-Driven and Link-
Driven Minus operators, considerG1 = {(a, b), (a, c), (b, c)} and
G2 = {(a, b)}. G1 \G2 is a null graph containing only nodec and
no links. On the other hand,G1\·G2 contains all the three nodes
a, b, c and the links(a, c) and (b, c). We note in Lemma 1 that
the Link-Driven Minus operator can be expressed with a combina-
tion of Node-Driven Minus operator and Semi-Join operator (to be
described later).

LEMMA 1. Operator\· can be expressed using operators\ and
n. (Proof omitted for clarity.)

5.3 Advanced Binary Operators
Next, we introduce more sophisticated binary operators. Opera-

tor CompositionG1 �〈δ,F〉 G2 takes a directional conditionδ and
a composition functionF as parameters and produces a graph in-
duced by new links that are composed from links inG1 andG2.
Input links to be composed are selected if they satisfy the direc-
tional conditionδ. And each new link in the output is attached with
attributes generated by the functionF . The directional condition
δ consists of two link directions,d1=src|tgt andd2=src|tgt,
corresponding to links inG1 andG2, respectively. E.g.,δ=(src,
tgt) means two links are composed if and only if the source node
of theG1 link matches the target node of theG2 link, where two
nodes match if and only if they have the sameid.

Composition Function: Intuitively, the composition functionF
combines the attributes of input links and generates new attributes
for the output link produced by composition. Since there canbe a
variety of user-defined composition functions, we focus on the their
core requirements here. First, a composition function mustaccept
as input two groups of attributes (and their values) corresponding
to the two input links. These attributes may be link attributes or
node attributes. Second, a composition function must produce as
output a group of uniquely named attributes (and their values) to be
associated with the output link. If a function satisfies bothrequire-
ments, we consider it in the class ofCF. Formally, the composition
operator is defined as follows (note thatδd̄i

indicates the opposite
direction ofδdi

):

DEFINITION 5 (COMPOSITION). Let G1 andG2 be two so-
cial content graphs originated from the same social contentsite.
G = G1 �〈δ,F〉 G2, whereF is a function in the classCF, is
defined as:

• ∀u, v, `[u, v ∈ nodes(G), ` ∈ links(G) if and only if
∃`1 ∈ links(G1), `2 ∈ links(G2) s.t. u = `1.δd̄1

∧ v =
`2.δd̄2

∧ `1.δd1
= `2.δd2

∧ `.src = u ∧ `.tgt = v].

• `.{att1, att2, ...} = F(`1, `2)

In contrast with composition, operator Semi-JoinG1nδ G2, pro-
duces a subgraph ofG1 induced by theG1 links that match the
links in G2. Again, links to be joined are selected if they satisfy the
directional conditionδ. Both Composition and Semi-Join “con-
nect” links in their input graphs. However, composition generates
new links while semi-join simply filters away unwanted links. As
a special case, whenG1 (G2) is a null graph (i.e., no links), we set
d1 (resp.,d2) to src. Formally, we have:

DEFINITION 6 (SEMI-JOIN). Let G1 and G2 be two social
content graphs originated from the same social content site. G =
G1 nδ G2 is defined as:

• ∀`[`src, `tgt ∈ nodes(G), ` ∈ links(G) if and only if
` ∈ links(G1) ∧ ∃`2 ∈ links(G2) s.t. `.δd1

= `2.δd2
].

EXAMPLE 4 (SEARCH). We illustrate how the search task,
“Find John’s friends who have visited travel destinations near Den-
ver and all their activities”, can be accomplished. Given the social
content graphG and John’s node id101, we proceed as follows:
John’s network isG1 = σL

C2
(G n(src,src) σN

C1
(G)), whereC1 is

id=101 and C2 is type=‘friend’. Users who visited places near
Denver are captured by:G2 = σL

C4
(G n(tgt,src) σN

C3
(G)), where

C3 is {type=‘destination’, ‘near Denver’} andC4 is type=‘visit’.
John’s subset of friends who have visited places near Denveris
thenG3 = G1 n(tgt,src) G2, while places near Denver that are
visited by John’s friends areG4 = G2 n(src,tgt) G1. The union
G5 = G3 ∪G4 puts these two together. Activities by these friends
areG6 = σL

C5
(G n(src,tgt) G3), whereC5 is type = ‘act’. Fi-

nally, the unionG7 = G5 ∪ G6 puts together John, his friends
who have visited places near Denver, the places, and the friends’
activities.

5.4 Aggregation Operators
Aggregation is critical for most analysis tasks on social content

graphs including model-based methods like Latent Dirichlet Allo-
cation (LDA) [8]. One important feature of aggregation is the cre-
ation of new information (aggregation results) that need tobe stored
and maintained. Because of the rich structures of nodes and links,
we can naturally incorporate aggregation results as new attributes.
We define two operators Node Aggregation (γN

〈C,d,att,A〉(G)) and

Link Aggregation (γL
〈C,att,A〉(G)), whereC is a link condition as

described in Section 5.1,d=src|tgt is a directional constraint,
att is the destination attribute whose value will contain the ag-
gregation result, andA is the aggregation function.

Aggregation Function: Intuitively, the aggregation function takes
as input a collection of links (and their associated attributes and
values) and produces as output a value to be associated with the at-
tributeatt. We focus on two classes of aggregations: (i) the class
SAF of set aggregation functions that map a set of links to a set of
scalars, and (ii) the classNAF of numerical aggregation functions
that map a set of links to a numerical scalar value. We formally
define both classes below. Note that in the following definition, we
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use $x to denote a variable. Whenatt is a set-valued attribute of
a link `, the expressioǹ.att = $x binds $x to one value of̀.att
at a time.

DEFINITION 7 (SET AGGREGATEFUNCTIONS). Let L be a
set of links. An aggregation functionA is in classSAF if and only
if it is of the form {$x | ` ∈ L & `.att = $x}, which extracts
values of the attributeatt from every link in the input setL and
forms an output set of scalar values.

As an example, letL correspond to the set of links corresponding
to a user’s tagging actions. Lettags be the attribute of these links
that contains the tags assigned to each item. The function{$x |
∃` ∈ L : `.tags = $x} forms the set of all distinct tags assigned
by the user to the items she has tagged.

DEFINITION 8 (NUMERICAL AGGREGATEFUNCTIONS). The
classNAF of aggregation functions is defined as follows:

• Every arithmetic operation+,−,×,÷ is in NAF;

• The constant functions0 and1 which map every scalar input
to the constant0 and1 respectively are inNAF;

• Summation over a collection, i.e.,
∑

x∈X
f(x), whereX is

a collection andf is a function inNAF, is in turn inNAF;

• Product over a collection, i.e.,Πx∈Xf(x), whereX is a col-
lection andf is a function inNAF, is in turn inNAF;

• NAF is closed under composition .

It is easy to see that popular aggregate functions like summation,
count, and average can be readily expressed inNAF. For example,
to count the number of elements in a setX, we do the following:
COUNT (X) ::=

∑
x∈X

1(x). Other aggregate functions like
minimum and maximum can also be expressed, although the details
of the construction is omitted here for the clarity of presentation.
Henceforth, we refer to the union of the classesSAF ∪NAF as
simplyAF.

DEFINITION 9 (NODE AGGREGATION). LetG be a social con-
tent graph,γN

〈C,d,att,A〉(G) produces a social content graphG′ that
is isomorphic toG and∀v ∈ G′ if ∃` ∈ G∧` satisfiesC∧`.d = v,
thenv.att=A({`i ∈ links(G) | `i satisfiesC & `i.d = v}).

Notice that the directionality parameterd acts as a group-by at-
tribute, in that all outgoing links from a node (or all incoming links
to a node) are grouped together and aggregated. As an example
of node aggregation, supposeA(L) simply counts the number of
links in L. Let the conditionC betype=‘friend’. The expression
γN
〈C,‘src′,fnd cnt,A〉(G) produces a graph that is isomorphic toG

except for every node that has one or more outgoing ‘friend’ links.
For those nodes, an attributefnd cnt is generated to store the ag-
gregate value, namely the number of friends, as computed by the
aggregation function. Similarly, node aggregation can be used to
assign an attributetags used to every user node, whose values
include all the tags that have been used by the user.

The definition of the Link Aggregation operator is analogousto
Node Aggregation, except for two major differences. First,link
aggregation changes the structure of an input graph: it replaces a set
of links between a givensrc andtgt node by a new link. Secondly,
the result of the aggregate computation is assigned as a destination
attribute of the newly created link.

DEFINITION 10 (LINK AGGREGATION). Let G be a social
content graph,γL

〈C,att,A〉(G) produces a social content graphG′

as follows:

1. Partition{` | ` ∈ links(G)∧` satisfiesC} on`.srcand`.tgt;

2. For each set of linksLs,t sharing the same source nodes and
the same target nodet, replaceLs,t with a new link`s,t;

3. Attach an attributeattwith `s,t, with its value computed as
A(Ls,t).

As an example of link aggregation, letG1 be a graph containing
users and their friends, and letG2 be a graph containing users and
cities that they have visited. Both these subgraphs can be extracted
easily from an input social content graph corresponding to asocial
content site, in a manner similar to that illustrated in Example 4.
Furthermore, letG3 be the result of composingG1 andG2, where
the composed links contain attributetype=‘user friend item’ and
are results of composing friend links inG1 and visit links inG2.
The link aggregationγL

〈C,vst cnt,COUNT 〉(G3), whereC is the con-
dition type=‘user friend item’, replaces each set of links sharing
the same user node and the same city node by one new link. It
then assigns an attributevst cnt to the new links, whose value is
computed by counting the number ofuser friend item links
from the user node to the city node inG3.

Next, we describe a comprehensive example that represents the
collaborative filtering strategy of recommendation.

EXAMPLE 5 (COLLABORATIVE FILTERING). We show how
collaborative filteringcan be expressed for recommending travel
destinations to John. Given the social content graphG and John’s
nodeid=101, we proceed as follows:

1. G1←− σL
type=‘visit′(G nsrc,src σN

id=101(G)). G1 now con-
tains user John and the places he has visited.

2. G′
1←− γN

type=‘visit′,src,vst,A(G1), whereA is a set aggre-
gation function that collects the set of destinations that John
has visited and stores that as attributevst of node John.

3. G2←− σL
type=‘visit′(G nsrc,src σN

id 6=101(G), finding users
other than John and the places they have visited.

4. G′
2←− γN

type=‘visit′,vst,src,A(G2), collecting the set of des-
tinations that each user (other than John) has visited and
stores that as attributevst of the user node.

5. G3←−G1�〈δ,F〉 G2, whereδ = (tgt, tgt) andF is a com-
position function that computes the Jaccard similarity be-
tween user John and every other user and assigns the result
to the attributesim on the links produced by composition.
The attributevst of each user contains the necessary infor-
mation forF to compute the Jaccard similarity between John
and other users. Notice that this step produces one link from
John to another user for every common place visited by both.
The value ofsim on all these links is the same.

6. G4←− γL
sim>0.5,type,A′(G3), whereA′ is an aggregation func-

tion that assigns the constant string value ‘match’ to the des-
tination attributetype and retains the value ofsim from
any of the input links.6 This step replaces each set of links
from John to another user similar to him with a weight over
0.5 by a new link withtype=‘match’.

6Notice that this is well defined.
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$1 $2 $3
type=match

type=destinationid=101

type=visit

Figure 2: Example of graph pattern for collaborative filteri ng.

7. G5←−σL
type=‘visit′(Gntgt,srcσ

N
type=‘destination′(G)). This

step computes users and the destinations they have visited.

8. G6←− (G4 ntgt,src G5)�〈(tgt,src),sim sc,F′〉 (G5 nsrc,tgt

G4). This step composes the two graphs: John and his sim-
ilarity network friends (with similarity over0.5), and users
and the destinations they have visited. For each of John’s
similarity network friends, who has visited a destination,a
new link is added between John and that destination. The
functionF ′ simply copies the value of attributesim of the
link from John to the user, on to the new link from John to
the destination node and assigns this value to the attribute
sim sc.

9. G7←− γL
C,score,AV ERAGE(G6). For each destination node,

we replace the set of links from John to the destination node
by one new link with an attributescore. The value of
score is computed by taking the average of thesim sc
values on the links being aggregated.

Finally, destination nodes so obtained can be recommended to
John on the basis of the computedscore value.

Often, aggregations can involve multiple links. For example,
counting the number of each user’s friends who have tagged atleast
five URLs with the term ‘baseball’, involves aggregation on friend
and tagging links. This leaves us with two alternatives: allowing
complex aggregation conditions like agraph patternand therefore
using fewer aggregation steps, or using more aggregation steps and
therefore reducing the complexity of aggregation conditions.

As an example, we illustrate the use of graph patterns for ex-
pressing aggregations more concisely. In the above example, we
used link aggregation confined to aggregating over links between a
pair of nodes. As a result, we first had to create links from John to
each destination node, one link for each similarity networkfriend
of John that has visited that destination (Step 6). Then we had to
perform a separate link aggregation to compute the score of each
destination being recommended to John, as the averagesim sc
value of the recommending user. Graph patterns make it possible
to achieve these steps more concisely. Figure 2 depicts a graph pat-
tern showing a ‘match’ link followed by a ‘visit’ link. First, we
compute the unionG4 ∪ G5 of the graphsG4, G5 in Example 5,
which contains John, his similarity network and the destinations
they have visited. The operatorγL

GP,score,A(G4 ∪G5), whereGP

is the graph pattern in Figure 2, creates a new link between John
and a destination node whenever the latter is reachable fromJohn
by a match-visit link path. Only one link is created from Johnto
the destination node, and the link is assigned an attributescore,
whose value is computed as the average value ofsim sc on the
match link of the set of match-visit paths from John to the destina-
tion node.

One of the research challenges we are pursuing is tostudy the
difference between the two approaches and identify the conditions
under which one of the two approaches will be more effective.

6. CONTENT MANAGEMENT

At the core of most social content sites, there are three major
categories of data:site content, users’social profiles and connec-
tions, and users’site-specific social activities. Intuitively, site con-
tent is the content that users are interested in when they visit the
social content site. Examples of such content include travel desti-
nations inY!Travel or URLs indel.icio.us. Social profiles
and connections are the information regarding the users themselves
(e.g., name, education, etc.) and their explicit social connections
(e.g., friends, classmates, colleagues, etc.). Finally, site-specific
social activities are the activities users perform on the site content.
For example, inY!Travel, users visit and browse destinations,
while in del.icio.us, users bookmark URLs with tags.

How to effectively and efficiently manage the three categories
of data is at the heart of challenges to be addressed by the Con-
tent Management layer of ourSocialScope system. As a first step
toward this goal, we describe and analyze three alternativemanage-
ment models for social content sites in Section 6.1. In Section 6.2,
we discuss a detailed study on how the storage of large volumes of
data can be optimized.

6.1 Models for Social Content Management
Logically, the social content graphis a single comprehensive

graph that encompasses both content and social informationrele-
vant for the site. Physically, however, there are multiple models
through which we can implement the social content graph, depend-
ing on how we maintain the social information.

Decentralized Model: In this model, each social content site
maintains their own social information, including storingthe user
profiles and social connections, and effectively manages the entire
social content graph internally. This is perhaps the most dominant
model in the early days of Web 2.0, when sites likedel.icio.us
andFlickr were just starting, and they were all soliciting users’
profiles and social connections on their own. This led to a setof de-
centralized social graphs, each residing in a different social content
site, and collectively forming the global social graph.

This decentralized model provides social content sites with some
obvious benefits, including full control over the entire data, which
enables the site to perform comprehensive analysis on the social
content graph, and increased exit cost on users, because they will
have to leave their social connections behind and re-establish (prob-
ably the same) connections elsewhere if they decide to switch to a
different site. It, however, has a couple of major problems.First,
establishing a social graph with critical mass is incredibly diffi-
cult. Many social content sites can only provide strong userex-
perience when they are able to leverage a large underlying social
graph. For example, an event planning site is of no practicalvalue
if few of your family and friends are using it. This presents the
cold start problem for many content sites that few of them can
overcome. Second, social graph decentralization means it is nec-
essary for users to establish their social connections multiple times
on many different sites, even though most of those connections are
the same. This creates unnecessary burdens on the users and deters
them from adopting emerging social content sites.

Closed Cartel Model: With the emergence of several dominant
social networking sites, the Closed Cartel model has becomevi-
able. In this model, users establish and maintain their social pro-
files and connections at a few of the dominant social sites andlet
those sites or third-party applications, which are developed specif-
ically for those sites, fulfill their content needs.Facebook is the
prime example of this model. The social sites in this model, like
in all cartels, are the biggest winners here: they maintain full con-
trol over the social content graph and effectively determine which
content users will have access to. Content sites in this model are
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Factor Decentralized Model Closed Cartel Open Cartel

Users
which site to interact with? content site social site content site

multiple same connections and profiles? yes no no

Content Sites
control over content yes limited yes

control over social graph yes no limited
control over activities yes no yes

Social Sites
control over content no limited no

control over social graph no yes yes
control over activities no yes limited

Table 2: A Comparison between Three Content Management Models for Social Content Sites.

reduced to social applications, with no ability to perform complex
analysis on the underlying social graph. More importantly,they are
also forced to adapt their user interaction experience to the overall
user interaction theme of the host social sites. There are two ma-
jor implications for users. First, users no longer have to maintain
many social profiles and establish the same social connections at
many different sites, which is a significant improvement over the
Decentralized Model. Second, however, they are forced to have a
central online social presence, without which they won’t even have
access to the contents otherwise would have been available on con-
tent sites.

Open Cartel Model: The Open Cartel model is an integration
between the Decentralized and Closed Cartel models. In thismodel,
a few dominant social sites still maintain the social profiles and
connections. However, through open standards, individualcontent
sites are allowed to retrieve social information from them,given
users’ permission, and integrate it with the content they provide on
their own sites. Furthermore, content sites are allowed to propa-
gate social profiles and connections established on their own sites
back to the social sites. Given this open access and depending on
their levels of expertise, the content sites can now operatein one of
the three levels. The simplest content sites can choose to delegate
the management of both activities generated on their site and the
social connections to the social sites. More sophisticatedcontent
sites can manage user activities on their own and simply relyon
social sites to provide the social graph. Even more sophisticated
content sites can maintain their own social graphs and keep them
in sync with the social sites. These social graphs can be considered
as focused views on the underlying global social graph. The im-
plications for users are three-fold. First, similar to the Close Cartel
model, there is no need for users to repeat their profiles and con-
nections at many different places. Second, users will have multiple
points of interaction where they can consume content powered by
their social profiles and connections. Finally, user experience can
be fully customized instead of conforming to the look and feel of
the social sites.

Discussion: A summary of the comparison between the three
models is listed in Table 2. While it is relatively clear thatthe De-
centralized Model is being replaced by the Cartel models, word is
still out on which Cartel model will eventually come out on top.
The core issue here is control over the content and social activi-
ties. In the Closed Cartel model, content sites delegate theman-
agement of social activities and the presentation of content to the
social sites and essentially become applications that can not survive
without the host social site. In the Open Cartel model, social and
content sites create symbiosis relationships, where social sites pro-
vide valuable information to enhance user experience on content
sites, and content sites in turn realize the value of the social graphs
on social sites and expand them by providing users with useful con-
tents and engaging them in interesting activities. It is ourbelief that
small niche content sites (e.g., your neighborhood readinggroup)
will prefer the Closed Cartel model for ease of management, while

larger content sites (e.g., New York Times andY!Travel) would
prefer the Open Cartel model.

6.2 Activity-Driven Data Management
A good understanding of social connections and activities can

help cluster users and their associated contents in ways that would
improve the data access performance. We briefly discuss how we
can leverage those to cluster users for better query processing.

Consider a social content site similar todel.icio.us, where
users connect with other users and tag items with tags. LetU be
the set of user nodes. Given au ∈ U , we useitems(u) to denote
items tagged byu, network(u) to denote users connected tou,
andtaggers(i, k) to denote users who tagged itemi with tagk.

Queries and Scores:For this study, we are interested in keyword-
only queries,Qu = k1, ..., kn. We first define the score of an item
i for useru and a keywordkj , scorekj

(i, u) = f(network(u) ∩
taggers(i, kj), wheref is a monotone function. We further define
the overall score of an itemi for a user queryQu asscore(i, u) =
g(scorek1

(i, u), ..., scorekn(i, u)), whereg is a monotone aggre-
gate function. While the framework is general enough to permit
arbitrary monotone functionsf andg, we will usef = count and
g = sum, for ease of exposition.

Indices: Typically, in Information Retrieval, one inverted list in-
dex is created for each keyword [6]. Each entry in the list contains
the identifier of a document along with its score for that keyword.
Storing scores allows to sort entries in the inverted list thereby en-
abling top-k pruning [16]. While in classic IR each document has a
unique score for a keyword (e.g., tf*idf [6] or probabilistic [18]), in
our problem, the score of an item for a tag depends on the network
of the userwho is asking the query.

One straightforward adaptation to our framework is to storeone
inverted list per(tag, user)pair and sort items in each list accord-
ing to their scores for the tag and user. We denote such an index
by ILu

k , which contains entries of the form(i, scorek(i, u)). Each
item will be replicated along with its score in each(tag,user)in-
verted list. At query time, items scores can be aggregated across
all inverted lists relevant to query keywords. However, consider
a moderately sized [19] social content site with100, 000 users,1
million items, and1000 distinct tags. If on average each item re-
ceives20 tags which are given by5% of the users, the size of the
index would be approximately1 terabyte, assuming10 bytes per
index entry. This kind of space requirement can easily become pro-
hibitive as the network and tagging activity expand.

Clustering: In [5], we explored user clustering strategies which
achieve different compromises between storage space and process-
ing time. Here, we formalize these strategies and expand them fur-
ther. The intuitive idea is to cluster users according theirsocial
connections and activities such that score estimations canbe done
accurately without blowing up the index size. There are three main
strategies:network-based, behavior-basedandhybrid.

Given a clusterC, the score of an itemi in an indexILC
k , is
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computed as the upper-bound of scores ofi for each useru ∈ C:

scorek(i, C) = maxu∈Cscorek(i, u) (1)

By storing score upper-bounds, top-k pruning algorithms can
still be used. However, score upper-bounds entail having tocom-
pute exact scores at query time for a specific user. This computation
introduces some processing overhead compared with the straight-
forward approach, where exact scores are stored for each(tag, user)
pair. To better understand this, we formalize the differentuser clus-
tering methods.

DEFINITION 11 (NETWORK-BASED CLUSTER). Two usersu1

andu2 belong to the same network-based cluster if and only if the
following predicate is true:

|network(u1) ∩ network(u2)|

|network(u1) ∪ network(u2)|
≥ θ (2)

whereθ is an application-defined threshold. Two users fall into the
same network-based cluster if their networks are similar enough.
Given that item scores depend on user networks, it is naturalto
assume that an item would have a similar score for two users whose
networks overlap substantially. Each user falls into a single cluster
and an inverted list is created for each cluster, instead of each user.

In [5], we explored the space/time compromise of network-based
clustering and showed that it consumes less space than the basic
strategy without incurring too much query processing overhead.
The applicability of network-based clustering to larger networks,
obtained by integrating different social graphs, is the subject of fu-
ture research.

Unfortunately, network-based clustering may have poor perfor-
mance in the following scenario. Assume a useru1 whose network
contains usersv1, v2, ..., v20 andv21, ..., v25. Assume another user
u2 whose network containsv1, v2, ..., v20 and thatu1 andu2 end
up in the same cluster. However, if most of the tagging actions
come from users inv21, ..., v25, item scores foru1 andu2 would
be very different. Clusteringu1 and u2 would not be beneficial
and would in fact incur unnecessary processing overhead. Conse-
quently, we further explored behavior-based clustering.

DEFINITION 12 (BEHAVIOR-BASED CLUSTER). Two usersu1

andu2 belong to the same behavior-based cluster if and only if the
following predicate is true:

|items(u1) ∩ items(u2)|

|items(u1) ∪ items(u2)|
≥ θ (3)

Here, two users belong to the same cluster if their tagging be-
havior is similar. In this case, the network members of a useru

may belong to multiple clusters. Therefore, at query time, poten-
tially more clusters will be considered than in the network-based
clustering strategy. In [5], we showed that behavior-basedcluster-
ing achieves better processing time to the expense of space when
compared to network-based clustering.

Ideally, one would want to combine the benefits of network-
based and behavior-based clustering. We define hybrid clustering
where two users fall into the same cluster if members of theirnet-
work tag similarly. Here, we give the definition of a hybrid cluster:
exploring the benefits of this strategy is the subject of future work.

DEFINITION 13 (HYBRID CLUSTER). Two usersu1 and u2

belong to the same hybrid cluster if and only if the followingpred-
icate is true:

|items(v1) ∩ items(v2)|

|items(v1) ∪ items(v2)|
≥ θ (4)

for all usersv1 ∈ network(u1) andv2 ∈ network(u2)

Further Discussion: We explored users’ social connections and
behaviors to answer a very simple kind of information discovery
query: keyword-only queries. However, those social information
can potentially be leveraged in many other fashions, including guid-
ing information synchronization decisions from remote social sites.
For example, a user who is highly connected may require more fre-
quent synchronization of his network from social sites. Thedevel-
opment of a framework to guide data storage and synchronization
decisions based on users’ social connections and activities is an in-
teresting research field needs to be explored further.

7. INFORMATION PRESENTATION
Supporting effective user interactions in social content sites is

not only a matter of locating relevant results for the user, but also
identifying the right presentation of results. The right presentation
can help a user explore the information more effectively, especially
when she is not sure about exactly what she wants, which is often
the case, as we learned from theY!Travel queries. Our vision
for the Information Presentation layer is to builda dynamic result
exploration framework.

In search, presentation is primarily in the form of a single ranked
list of results, where a result’s rank reflects its degree of relevance
to the input query. In recommender systems, presentation isan im-
portant aspect and has direct implications on building users’ trust
and giving them incentives to participate in more activities [24, 28].
There are many interesting new challenges in information presenta-
tion, including those that are related to user interface design. Here,
we focus mainly on result grouping, and providing explanations for
results and groups.

7.1 Grouping Items
Given a set of itemsIQu which have been computed for a user

and a query, there are many different mechanisms for grouping
items inIQu : Social Grouping, which defines item groups based on
similarity or closeness between users who endorsed the items;Top-
ical Grouping, which defines item groups using the abstract topics
each item belongs to;Structural Grouping, which relies on similar-
ity in items’ attributes. A key algorithmic challenge isthe dynamic
discovery of groupsgiven a query result setIQu . We provide here
a formal definition of social grouping.

DEFINITION 14 (SOCIAL GROUPING). Two itemsi1 andi2
belong to the same social group if and only if the following predi-
cate is true:

|taggers(i1) ∩ taggers(i2)|

|taggers(i1) ∪ taggers(i2)|
≥ θ (5)

whereθ is an application-specific threshold. The groups defined
above are user-independent and could be pre-processed. When a
query resultIQu is computed, the task is to partition it into a set of
meaningfulgroups. Group meaningfulness can be defined using a
combination of the following criteria. First,total number of groups.
Due to real estate on a page, the number of groups to display ata
time needs to be restricted. Second,group quality, which is defined
using the relevance of items in the group. Finally,group size, which
is simply the number of items in the group.

Since screen real estate is limited, an interesting presentational
alternative is to present the groups hierarchically, i.e.,initially present
a small number of groups appropriate for the screen area and upon
request divide a group that the user is interested in into subgroups.
Devising a grouping mechanism that dynamically adjusts with zoom-
in and zoom-out requests is a promising presentation model that
needs to further explored.
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7.2 Explanations
Another challenge is to provide explanations on the resultsand

descriptions of the groups. Unlike in web search, results from infor-
mation discovery on social content sites are often endorsedby other
users or are connected to other interesting objects, i.e., there exists
a so-calledsocial provenance. Letting users be aware of the social
provenance often allows them to make more informed decisions as
to what to do with the results. Similarly, providing descriptions on
result groups can help them better understand the semanticsbehind
those groups and therefore make better choices on what to explore
further.

An explanation for a recommended item depends on the under-
lying recommendation strategy used [30]. If an itemi is recom-
mended to useru by a content-based strategy, then anexplanation
for recommendationi is defined as:
Expl(u, i) = {i′ ∈ I | ItemSim(i, i′) > 0 & i′ ∈ Items(u)}

i.e., the set of items similar to items (i′) that useru has rated
in the past. The explanation may contain more information such
as the similarity weightItemSim(i, i′) × rating(u, i′). Here,
ItemSim(i, i′) returns a measure of similarity between two itemsi

andi′, andrating(u, i′) indicates the rating of itemi′ by useru
(it is 0 if u has not ratedi′).

If an itemi is recommended to useru by a collaborative filtering
strategy, then anexplanationfor a recommendationi is:
Expl(u, i) = {u′ ∈ U | UserSim(u, u′) > 0 & i ∈ Items(u′)}

i.e., the set of users similar tou who have rated itemi. Similarly to
item-based explanations, we can augment each useru′ in the expla-
nation with the similarity weightUserSim(u, u′)× rating(u′, i).
Here,UserSim(u, u′) returns a measure of similarity or connectiv-
ity between two usersu andu′ (it is 0 if u andu′ are not connected).

In all cases, the explanation of a recommendation is either aset
of items or a set of users, possibly together with weights as de-
scribed above. Given an item explanation, there are many presen-
tation alternatives. The most straightforward option is tolist the
set of users or items in the explanation of each item. Anotheral-
ternative is to return aggregate information such as: “60% of your
friends endorsed this item” or “This item is similar to 75% ofitems
you visited before”. The challenge is when and how to generated
those aggregation information efficiently.

We can also definegroup explanation, Expl(u, g), as an aggre-
gation over individual item explanations in the group. However, it
is more intriguing to explore how we can effectively convertindi-
vidual explanations for items in a group into a concise explanation
at a group level.

8. RELATED WORK
In a series of works, Mendelzon et al. [12, 11, 10] proposed

query languages for manipulating graphs. TheG+ language [12]
was proposed as a complementary language for Datalog, for ex-
pressing recursive queries using visual concepts. Later,G+ was
extended intoHy+ [11], a hypergraph-based visualization and query-
ing language. In [10], additional primitives were added to support
aggregation over edges as well as paths, without explicit recursion,
but using transitive closure as a primitive. Amann and Scholl [4]
proposed the Gram model and language for querying hypertextdata
modeled as graphs. The language includes limited support for re-
cursion. All of these languages, however, use graph patterns ex-
tensively within their queries. This is in contrast to our algebraic
approach, which relies on a set of operators that manipulatenodes
and links.

In the context of semi-structured data, substantial work has been
done on graph querying (e.g., Struql [17], UnQL [9], and Lorel [1]).

Much of the emphasis was on querying graphs using regular path
expressions over edge labels. Such expressions are too heavy-
weight for our applications. Finally, in the context of object-oriented
databases, the GOOD data model and query language were devel-
oped by Paredaens et al. [20]. A key distinction between virtually
every paper on graph querying and our work is that we do not ex-
pect the user to interact with the system using our query language.
In addition, none of these previous works considers the integration
of search, querying, and recommendation.

Indeed, while search and recommendation have been investi-
gated separately, their combination has received very little atten-
tion, with perhaps the only exception in [15], where the authors
studied the effectiveness of scoring functions in both search and
recommendation. Another closely related work [26], which de-
veloped OLAP-style algorithms to answer social queries such as
returning all the tags of a given user. Neither paper addresses the
challenges of social content analysis, which is substantially more
complex than queries.

Several approaches have been developed in the context of Web
search result presentation. The approach in [25] is based oncluster-
ing results into groups of related topics. Gravano and Dakka[13]
describe a hybrid method for summarizing online news articles
which leverages pre-computation in order to efficiently compute
document clusters, at query time. By contrast, our study focuses
on result exploration through social, structural and topical group-
ings. In [22], the authors propose a presentation layer on top of a
relational database in order to improve its usability, stressing the
importance of provenance. While the idea of presentation iscom-
mon to ours, their focus is not on information discovery oversocial
content sites.

Finally, faceted search [14, 7] supports richer information dis-
covery tasks over structured data. However, it mainly focuses on
exposing hidden data correlations and providing aggregatecounts
along with each facet. It will be interesting to explore if social
provenance can be considered with the faceted search framework.

9. CONCLUSION
We envision that domain-specific social content sites will in-

creasingly become a part of the our online life. We motivatedin-
formation discovery over such (real or virtual) social content sites
and identified several major challenges. In particular, we proposed
SocialScope, a logical architecture with three layers: Information
Discovery, Content Management and Information Presentation. We
discussed key issues and contributions in each layer.

In the context of Information Discovery, we proposed an alge-
braic framework to manipulate social content graphs. To thebest
of our knowledge, our algebra is the first one that is capable of ma-
nipulating social content graph in a uniform and flexible way. In
the context of Content Management, we identified three main cat-
egories of data within social content sites: site content, social pro-
files and connections, and site-specific social activities.We exam-
ined three alternative content management models, each defined by
how they management the three categories of data, and compared
their benefits and drawbacks. We also discussed how to leverage
common user behaviors to optimize data storage and indexingfor
query processing. Finally, in the context of Information Presen-
tation, we discussed how novel ways of presenting information to
users can help them understand the large variety of content discov-
ered from social content sites.

We believe thatSocialScope offers a framework in which key
challenges in data management in social content sites can bead-
dressed by our research community.
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