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ABSTRACT
We introduce a world vision in which data is endowed with mem-
ory. In this data-centric systems paradigm, data items can be en-
abled to retain all or some of their previous values. We call this
ability remembrance and posit that it empowers significant leaps
in the security, availability, and general operational dimensions of
systems. With the explosion in cheap, fast memories and storage,
large-scale remembrance will soon become practical. Here, we
introduce and explore the advantages of such a paradigm and the
challenges in making it a reality.

1. INTRODUCTION
Since the dawn of computing, data architectures have been es-

sentially single-valued: each object instance is associated with only
one value, namely, the value most recently assigned to it. Upon the
next assignment, the old value of the object is overwritten. When
one is given a digital object, its history (i.e., its past values and the
actions that caused those values to change) is not usually available.
Further, objects are usually not self-aware.

Many subcommunities of computer science have explored the
idea that it would be beneficial to retain the history of data items, or
at least their old values. For example, within the database commu-
nity, we have seen version-based concurrency control [46], support
for rollback to checkpoints [19, 44], the total recall introduced in
Postgres [43, 42] that has evolved into time-travel databases [28,
35, 37] and temporal SQL [29, 39], and provenance for scientific
data and workflows [3, 12, 13, 14, 36]. Outside the database com-
munity, there are proposed or actual systems for storing and recall-
ing past system configurations [49], old versions of source code [5,
10], archival data [31], file system backups, old versions of indi-
vidual files [26, 30, 32, 11, 40], old program and systems execu-
tion points in the form of checkpoints [33, 44] and recent history
of an execution [41], past states of the World Wide Web on the
WayBack machine [1], YouTube, and gMail-style email reposito-
ries, and more [2]. One can also think of logs as a poor-man’s
version of remembrance, and logs are heavily used in database sys-
tems, file systems [34], telecommunications and other critical in-
frastructures, and all sorts of applications. Though some of these
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approaches to remembrance keep old data because it is faster or
simpler to keep it than to discard or overwrite it (e.g., log-structured
file systems and gMail users), other approaches have found novel
uses for the historical information. For example, many program
crashes are due to transient failures, and many of these crashes
can be avoided by retrying the last few instructions that were ex-
ecuted before the crash [41]. The US government has decided that
Enron-style corporate fraud is such a threat to society’s confidence
in corporate America that companies need to keep a copy of every
business email, spreadsheet, and report for several years [47], to
enable after-the-fact prosecution of corporate evildoers. The pro-
liferation of loyalty cards for retail shopping shows the benefits that
can be obtained by mining a log of all shopping transactions. And
the cultural anthropologists of the future will have a field day with
the information obtainable from the WayBack machine [1].

Computer scientists have also proposed to endow objects with
self-awareness, most notably in the programming language com-
munity [9, 22, 23, 38, 45, 48], but also much closer to home: for
over 30 years we have been fond of associating each data item with
its metadata, and have even toyed with the idea of stronger notions
of self-awareness [27].

However, even at their grandest, most of these remembrance ap-
proaches boil down to versioning systems that ensure the persis-
tence of explicitly defined versions of data objects. Because each
approach was developed separately and for a different purpose, the
result is a piecemeal coverage of past states of the world, with dis-
parate, unintegrated interfaces reflecting a pastiche of different un-
derlying assumptions. As a result, we cannot just click a button to
go back to the state of the world as of 2 PM this day a year ago. Fur-
ther, except for checkpointing, backup, data archival, and source
code management, these versioning systems have not made it into
the mainstream. Even where remembrance-based approaches have
made it into the mainstream, a data item and its previous versions
are not considered as an inseparable unit. Instead, each specific
version is instantiated as a separate data item with its own unique
identity. Associations between data items and their previous ver-
sions are maintained externally with great effort. These decisions
were made for what were, at the time, good reasons. We believe
that it is time to revisit those decisions in the light of recent changes
in technology, and examine what benefits could accrue from hav-
ing universal support for remembrance. It is also time to see what
research contributions from the database community and other ar-
eas of computer science are needed in order to support universal
integrated remembrance.

When thinking about remembrance in computing systems, it may
be helpful to draw an analogy with the evolution of wetware [20],
i.e., living beings. Single-celled organisms have little memory be-
yond what is hard-coded into their DNA. Remembering little, they
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can learn very little. Without much ability to learn, their potential to
adapt dynamically to their environment is limited, and much of the
pressure for adaptation to their environment is thrust onto repro-
ductive processes that involve random changes in their DNA. As
organisms became more complex, their memory and their ability to
learn increased, as did their self-awareness. Sentient beings’ mem-
ories retain vast amounts of contextual information with significant
temporal components, often as explicit as the history of their for-
mative elements. This meta-information has been shown to be an
essential building block of humans’ ability to reason, at the core
of our associative memory processes [21]. This outlines one of the
main differences between knowledge and raw information.

Although advanced wetware organisms such as humans can re-
member many events from their past history, they certainly can-
not remember everything. For example, young humans have trou-
ble remembering many things that their parents consider impor-
tant, while their parents have trouble remembering where they left
their car keys, and their grandparents have trouble remembering
where they parked their car at the mall. At the dawn of the com-
puter age, researchers were already positing that humans can ben-
efit from computer assistance in remembering more of what hap-
pens to them [6]. Sixty years later, technology had advanced to
the point that researchers could investigate so-called “total recall”
paradigms for human activities such as the MyLifeBits [4, 16, 17,
18, 15] project, where both online and offline human activities are
recorded in a database. These approaches use technology to pro-
vide a partial record (e.g., video and audio) of what happens to a
person. “Total recall” is a misnomer for these experiments, which
just remember what the human’s recording device saw or heard,
not how the human associated with the device felt about what was
happening or how the human experienced the environment (e.g.,
hot, cold, sharp, soft, tense, relaxed, etc.). Thus it may be more
accurate to classify these approaches as providing total recall not
for a human, but rather for a device they carried around with them.
However, even at the device level, such infrastructures currently
lack self-awareness; for example, we cannot distinguish between
the case where the video camera decided to turn itself off because
its battery was low, and the case where the human switched off the
camera. This lack of self-awareness is not surprising, since these
projects are intended to endow humans with total recall, not hu-
mans’ digital devices and their fine-grained data and application
states. In the absence of system-level remembrance, only a partial
temporal view of the life of a human or a digital artifact can be
achieved. Ultimately, while Memex-inspired [6] technology such
as MyLifeBits is for assisting humans, system-wide remembrance
for data items can offer leaps in data processing capabilities.

We posit that, as computing evolves toward increasingly semantics-
rich context-aware systems, a fundamentally novel data-with-memory
model of remembrance will emerge. In this model, digital entities
ranging from simple memory records to complex structured ob-
jects are inherently endowed with the ability to retain full or partial
memories of their past contexts. Then history becomes an inte-
gral part of every entity. By considering historical values for data
containers to be an integral part of the container, we enable pro-
cessing based on not only the current incarnation of a data item,
but also its past history, trends, evolution, and lineage. Data items
stop being simple containers that live only in the current instant;
they become aware of time, and have a knowledge of the evolution
of their own state along the temporal axis. Such capabilities are
essential to support the transition from information processing to
knowledge processing.

In this paper, we define and explore this vision. While the long-
term benefits’ fruition is linked to the emergence of strong seman-

tics processing paradigms, noteworthy advantages to deploying such
a data model exist also in the immediate future. These range from
significant leaps in the types and expressivity of the system policies
now achievable, to self-healing systems that rely on remembrance
to recover from undesirable events at the local level with minimal
overall system impact, resulting in improved availability. To realize
these benefits, however, we will have to overcome major technol-
ogy hurdles in efficiently recording, storing, searching, indexing,
retrieving, processing, and ignoring history. We must also seri-
ously consider the possibility that intelligent behavior requires a
well-developed ability to forget, as well as to remember; this raises
the question of how we should choose what to forget.

2. WHAT TO REMEMBER?
At the extreme, we can imagine a system where every com-

ponent, from the micro-level to the macro-level, remembers ev-
erything that has happened to it, from the moment of its creation
through the moment of its destruction. At the lowest levels of ab-
straction, memory locations can have remembrance, making it pos-
sible to query for older values of data stored at a particular loca-
tion. Individual data blocks in secondary storage can have mem-
ory of their previous context and values. Higher logical structures
such as files are no longer dumb containers of data; they retain
contextual information about their contents throughout their life-
time. More abstractly, a self-aware PDF file remembers the LaTex
or Word documents from which it was created, even though they re-
side in separate containers. Variables in an execution of a program
can possess remembrance, including awareness of the environmen-
tal conditions that affected their execution. The program itself can
remember its executions and their effects, as can the larger config-
urations that include it. Inside a database, we may choose to make
tuples, schemas, constraints, triggers, stored procedures, and other
metadata remembrance-capable, as in an extension of time-travel
databases. We can do the same for transactions and transaction ex-
ecutions.

Even application-layer constructs and data containers can have
remembrance. A visitor to a web page can get not only the current
instance of the web page, but also traverse the page chronologi-
cally. Web searches can include the temporal dimension; this is
already possible now with Google News where users can specify
a particular time frame when searching for old news. Queries no
longer return a flat time-ignorant result, but rather a result that can
be browsed along the temporal axis.

Transfer, copying, and movement of data objects can preserve
memory – a data container can retain its memory when it is moved
to a new location. The copy operation transfers old memory from
the original source to the copied container, along with new mem-
ory of the copy operation. Deletion removes the container, but its
memories can live on, as in time-travel databases.

Is this vision attainable, or even desirable? Storage is cheap,
but in practice, physical, logistical, legal, and pragmatic issues will
limit what a computer system can and should remember.

Physical limits. Hardware does fail and bits do rot, even on mag-
netic disk. When hardware dies, any memories stored on it will
die with it, so memories that should not be lost should be stored
in a fault-tolerant manner. In a system that supports remembrance,
users will expect their data to last forever, with no exceptions for bit
rot, human error, or hardware failure. Large-scale fault-tolerance
for remembrance will probably be easiest to provide in a cloud
computing context, such as in Google’s initiative to preserve pub-
licly sharable scientific data.

No hardware support is available for remembrance at the level
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of physical bytes, either in L2 cache, memory, or disk. Further,
the astronomical cost of such support and the security issues that
it would introduce outweigh the benefits that might result from,
e.g., improved forensic analysis. Thus we restrict our attention to
support for remembrance at higher levels of abstraction, such as
abstract locations.

On the other hand, storage has become very cheap, with the re-
sult that we already retain much more data than we used to. The
cost of accessing that data has dropped much more slowly, but that
will not matter if historical information is rarely accessed.

Performance limits. At any level of abstraction, a naive imple-
mentation of remembrance will kill CPU, network, and system per-
formance. For example, suppose that a fetch of an object from disk
brings not only the current value of the object, but also all its pre-
vious values and its other associated memories. If the application
does not need this extra information, it will occupy valuable buffer
space and pollute the L2 cache, crippling performance. Thus his-
torical information should be available when wanted and invisible
the rest of the time. For example, we may prefer to keep historical
versions of tuples on separate file pages from the latest versions. At
an extreme, we might choose to bury the historical information in
logs and only dredge it up on request. In other words, performance
considerations may dictate that we develop a very clean user in-
terface that provides the illusion of a self-aware and history-aware
system. In the relatively rare event that historical information is
accessed through this interface, we will quickly cobble it together
from searchable, indexable logs that we have shipped off to inex-
pensive remote self-organizing storage. This extreme vision raises
many new challenges in how to transparently move logs off to a
cloud of inexpensive, fault-tolerant storage; how to transparently
reorganize and/or index it in a manner conducive to future access
patterns; and how to transparently decide where to place the data
and its replicas. These problems are particularly acute for multime-
dia data, such as sounds, images, and videos. For example, suppose
that we have a MyLifeBits record of our life. How quickly can we
get an answer to the question Where are my car keys? or Where did
I park the car? Is it a security violation for the system to answer the
question Where did my spouse park the car? What about Where did
my teenager park the car? or simply Where is my teenager? Imag-
ine the benefit for a blind person if the system can answer questions
of the form Where did I leave my house keys/wallet/comb? These
examples show that both the utility and the sensitivity of a remem-
brance are very context-sensitive.

Security and legal challenges. As suggested by the examples above,
some remembrances are very sensitive, and it will be hard to man-
age them in a user-friendly way that preserves confidentiality and
privacy. (In the security community, privacy refers to the ability of
the owner of a piece of information to control what is done with it.)
For example, Microsoft Word’s limited ability to remember the his-
tory of a document has already caused scandals where the recipient
of a document was able to view previous drafts of the document,
and publicized their contents. Imagine the complications if a PDF
of a recommendation letter was inseparable from the versions of the
Word file from which it was created! If we cannot erase sensitive
remembrances from a disk, then the disk cannot be given to a new
owner. Similarly, shared computing facilities rely on our ability
to erase the memory of executions of sensitive programs. Digital
rights management facilities often depend on computers’ ability to
forget digital information. Laws such as HIPAA [8] require that
certain kinds of electronic records only be kept for a limited period
of time, and be destroyed thereafter. Thus we need iron-clad ways

to ensure that sensitive remembrances either do not fall into inap-
propriate hands, or are unintelligible if they do.

Usability challenges. Remembrances may be used directly by
a self-aware computer system to tune and improve itself, or by a
human who needs historical information. Both kinds of interfaces
will be challenging to provide at an appropriate level of abstraction.
This problem has been addressed in individual history-aware sys-
tems, but never in a manner intended to span multiple independent
systems with autonomy.

Philosophical challenges. The preceding discussion raises funda-
mental questions about our current notions of what an object is and
what object identity means.

Limiting remembrance. The foregoing discussion suggests that
even if we could, it may be better for computer systems not to re-
member everything. The fact that living beings tend to forget things
also suggests that there is value in the ability to forget. Psychologi-
cal studies of humans who do remember everything [24, 7] strongly
support this conclusion, explaining that people cursed with a per-
fect memory (a medical condition called Superior Autobiograph-
ical Memory Syndrome or Hyperthymesia) find themselves over-
whelmed by memories, distracted by memories, and/or unable to
abstract away from the details of their memories. Thus we postu-
late that systems with remembrance also need the ability to forget
– immediately raising the question of what to forget.

In some situations, specific hard-coded policies will dictate what
to forget. For example, companies often prefer to delete routine
business documents once their mandated retention period has ended
[25]. This policy is in place because companies have learned that
the legal liabilities that result from retaining such documents, which
can be subpoenaed in lawsuits, exceed their internal value to the
company. This raises the larger question of how a computer system
can learn such policies automatically.

An analogy to the short-term and long-term memory of humans
may be helpful here. We retain small details in memory for a short
period because they are most likely to be useful during that period.
For example, a person (let us call her Alice) can remember what
she ate for lunch today; that knowledge may guide her choice of
food for dinner. If Alice tried hard, she could probably remember
what she ate for lunch two days ago. But Alice will not be able to
remember what she ate for lunch one month ago. Her memory has
automatically removed that detail because she has not made use of
it for an extended period. This suggests that as a default policy, rou-
tine remembrances in a computer system may fade away gradually,
becoming less easily accessible over time, until they reach a thresh-
old where they are forgotten entirely. For example, the details of
the execution of a program may no longer be worth remembering
once the program has finished executing. However, if the program
is considered important, such as a financial transaction or a change
in the system configuration, the remembrance may be retained for
an extended period, in logs or in other forms. Further, there may be
high value in remembering the recent details of the execution of a
program, because they can allow us to recover automatically from
certain classes of failures [41].

In humans, detailed memories are often replaced by general pat-
terns that we learn from them. For example, we learn that Valen-
tine’s Day often involves giving and receiving flowers, cards, and
candy, though we may forget the details of individual instances of
Valentine’s Day. Similarly, before remembrances fade, the com-
puter system should use data mining techniques to learn whatever
useful patterns it can glean from them. At the simplest level, such
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techniques can be used to improve the tuning of the system and
plan future allocations of resources. Further, with system-wide re-
membrance in place, we will have new opportunities for automated
tuning and learning.

3. CONCLUSION
We have briefly presented our vision of the opportunities and

challenges of a world where computing systems are self-aware and
remember important aspects of their history and evolution. While
bits and pieces of this vision already exist in some applications,
these pieces have never been tied together into a seamless contin-
uum. If we can make systems sentient of their old context, lineage,
and values, and address the resulting challenges for performance
and usability, then we have the potential to reach new levels of
self-tuning in computer systems and support many exciting new
user-level applications.
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