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Abstract 
The current software development process in 
common use within industry is inefficient, in that 
the time required to incorporate results from 
competitive, beta, and previous releases into new 
versions available to customers is typically 
measured in years.  Further, the accuracy of 
customer feedback returned to the development 
team is frequently weak or incomplete, with 
samples often drawn from only a small, self-
selected set of customers.  This paper argues that 
we can automate this feedback process and, in so 
doing, drive an order of magnitude improvement 
in the rate at which software evolves and 
improves.   
 

1. Introduction 
The author has worked for a decade and a half on 
commercial system software, first language compilers and 
later database management systems, at two of the three 
leading commercial database system producers.  Over this 
period, we have experienced a ten fold increase in the size 
of these products when measured in lines of code, and 
have seen an expansion both in development and test team 
size that roughly parallels code base growth.  
Contemporary database products are typically larger than 
three million lines of code and the engineering teams for 
mature, industry leaders have grown to several hundred 
engineers each.  For this system size and complexity 
growth to even be possible, it is very clear that there have 
been incremental improvements to the software 

development process, which we fully expect will 
continue.  What is less clear is: 1) do systems really need 
to be this big to meet current customer requirements, and 
2) could these systems be evolved more quickly to 
respond to customer requirements in a more targeted 
fashion?   

Systems growth and development process 
improvement will continue, but existing processes only 
allow our current understanding of customer requirements 
to be translated into software.  The improvements do 
nothing to increase the quality of our understanding of 
customer requirements nor do they help to tighten the 
feedback loop between a customer’s experience using the 
product and a subsequent improvement to that product. 
 

2. Defining an Efficient Software 
Development Process 

Clearly, as an industry, we should continue working to 
improve the software development process – there is no 
question as to the worthiness of this endeavour, but there 
is considerable debate on whether the bulk of the 
engineering work that these process improvements are 
enabling are actually accurately targeting customer 
requirements.  Is the feedback between customer 
experience and subsequent product improvement 
sufficiently responsive?  In this paper we focus on 
improving the feedback loop between a customer’s actual 
experience using a server-side software product and the 
release of changes to the product that subsequently 
improve this experience.    

In the mid-1960’s a group of researchers, 
including Nobel laureate Paul Samuelson, defined the 
Efficient Market Hypothesis [10].  This theory argues that 
market prices reflect the knowledge and expectations of 
all investors.  An efficient market is one that translates 
knowledge very rapidly into an adjusted and accurate 
stock price.  There have been several instances of late 
where critical market information was not made available 
to investors and, as a consequence, market prices did not 
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accurately reflect the true value of the companies in 
question.  However, the theory is still of value, in that any 
market that rapidly translates deep knowledge of a given 
company’s present and future value into an accurate 
market price is an efficient market.    

Let us define an efficient software development 
process similarly, as one where customer needs and 
wants, including their (possibly negative) experiences 
using existing products, are translated into targeted 
software improvements that are quickly made available to 
customers.  An efficient software development market is 
one where requirements and issues with existing products 
are rapidly responded to with targeted product 
improvements. 

Our work here focuses on improving the 
bandwidth and speed of the communication between 
customers and the product development team, but does 
not address new requirements gathering or better 
understanding of where additional features would help 
customers.  Focusing on this feedback loop from 
customers to the product team and the translation of this 
feedback into targeted product improvements, we note 
that the current processes in widespread use today are 
extremely weak, which is to say that the opportunity for 
improvement is great.  Current customer feedback to 
product teams suffers from low bandwidth channels, and 
few customers actually participate.  Looking at the 
sources of customer feedback available to a development 
team, we have the marketing team reporting back on why 
they were, or were not, able to close a sale, the product 
support team reporting on common customer problems, 
user group presentations made by customers, consultant 
and industry analysis reports, and beta customer feedback.  
In addition, most development teams closely partner with 
a small subset of their customers with whom there is a 
high quality exchange of information.  Summarizing what 
is available, a few problems can be immediately seen: 1) 
most data is often not directly obtained from customers in 
that it’s reported through (a possibly biased) intermediary 
with a significant time lag, and 2) the data which is 
directly sourced from customers is very expensive to 
gather and, as a consequence, is only obtained from a 
small fraction of the customer base with enterprise 
customers being significantly over-represented. 

We propose using software data collection 
systems to solve these problems.  Automatic data 
collection can allow direct, detailed customer feedback to 
be obtained economically from a substantial cross-section 
of the entire customer base which enables reliable 
statistical analysis.  This gets reliable and detailed 
feedback directly back to the development team, allows 
rapid product feature or improvement prioritization to be 
made, is a far more precise process, and the information 
can be acted on much more quickly.    

Our work on active server feedback is being 
driven by two basic premises: 1) software availability will 
only be incrementally improved by continued investment 

exclusively in existing approaches to improving software 
quality, and 2) system downtime and the causes of these 
losses of availability are not sufficiently well-understood 
and, as a consequence, are not fully and efficiently 
addressed since it is not possible to effectively address a 
problem when the root cause and problem magnitude are 
not fully known. 

Why do we feel that current techniques can only 
yield incremental improvements in software quality?  The 
first and perhaps strongest argument is one based upon the 
sheer size and complexity of a modern server-side 
software stack.  A modern network-attached storage sub-
system is currently over a million lines of code.  
Operating systems, logically above the storage sub-
system, are now tens of millions of lines of code with 
systems such as Windows XP reportedly approaching 
fifty million [3].  Continuing to examine the server-side 
software stack, a typical data management system is over 
three million lines of code.  Additionally, a high scale, 
mission-critical application like SAP is over thirty-seven 
million lines of code [9]. What this means is that for a 
customer to experience a reliable, robust system that 
returns correct results in a predictable manner, this entire 
hundred million line software stack must all operate 
correctly.  What makes this even more difficult to achieve 
is that all components in the stack are on different release 
cycles, there is no integration test team responsible for the 
entire stack, the stack is usually sourced from multiple 
vendors and all vendors are asynchronously releasing 
possibly non-cooperating fixes.  As an industry, we 
attempt to deal with this complexity by depending upon 
well-architected interfaces between components and by 
investing heavily in testing efforts.  On systems software 
teams on which we have worked over the years, tester to 
developer ratios have approached 1:1, yet it is clear that 
the core complexity problem is neither solved nor is the 
impact substantially mitigated.  Further investment in 
maintaining and improving the software quality assurance 
process is clearly money well spent, and incremental 
improvements will continue to be realized, but a 
fundamental improvement in product availability will 
require new processes and approaches.   

One approach that appears to have merit is 
capturing actual operational data from the field and 
feeding this customer experience back into the 
development process.  An application of this approach 
that has yielded good results is to gather customer 
problems as reported to the vendor service organization 
[1, 2, 11].  A similar approach is to analyze problems as 
recorded directly by the customer [7, 8].  The principle 
advantage of these tracking systems is that, when an error 
is reported to a vendor or explicitly tracked by a customer, 
it is normally a serious event and therefore interesting.  
However, our data suggests that administrative error is a 
leading cause of operational system downtime and this 
entire class of errors are typically not reported to system 
vendors as a bug and are rarely accurately tracked in 



customer reports, since the accuracy and completeness of 
these reports are wholly dependent upon the 
administrators themselves, many of which do not do a 
complete job of self-evaluation. 

A refinement to this error tracking approach that 
depends upon customer reports is one where system-
generated error logs are analyzed [4, 5, 6, 13].  These 
failure-tracking systems have access to the full range of 
failures from hardware and software issues through to 
administrative errors but the information that can be 
mined from an error log is only a small subset of the 
information about the state of a failing system.  As a 
consequence, it can be very difficult to ascertain the real 
causes of many failure modes.  Error log analyzers have a 
more complete view of system availability, but a less 
precise view over the causes of the system failures, than 
do those systems dependent upon actual customer-
initiated feedback.  Some researchers have combined 
event log analyzing with administrator interviews to 
improve the precision of the error classification [6].  This 
can provide quite precise downtime cause classification, 
but these research methods are people-intensive in that 
interviews must be conducted and the techniques tend not 
to scale cost-effectively to very large customer sets.  In 
addition, many of the antecedent conditions to failure are 
not errors so they will not appear in logs.  As a result, 
these systems have limited power in finding correlations 
between operationally-acceptable system states and 
subsequent system failures.  Predictive failure analysis 
with this subset of the system state data is necessarily 
incomplete.  In this paper we focus on two forms of 
improvement: 1) reducing human involvement and 
subsequent cost in the data gathering process, and 2) 
improving the detail of the information gathered to 
include administrative errors and non-failure state 
tracking to help support predictive failure models. 

We refer to failure and system state tracking 
systems that return data back to the development team 
without human intervention, interviews, or site visits as 
Active Server Availability Feedback (ASAF) systems.  In 
this paper and we will look at two ASAF systems in more 
detail.  The first system, Watson [12], is already in broad 
use in client-side products and is now being adapted for 
server-side deployment.  In Section Three of the paper, 
we will describe Watson and show how it has been 
adapted for use with Microsoft SQL Server 2000 Service 
Pack Three.  In Section Four, we describe the Data 
Collection Agent (DCA), which is a research system 
currently deployed on over 100 Microsoft SQL Server 
2000 production servers.  The Data Collection Agent is an 
ASAF system that provides much more detailed data than 
Watson on product usage and the availability achieved 
and, rather than only reporting failures, it allows many 
system metrics to be monitored continuously over time.  
We believe this additional detail will allow correlation 
and trend analysis, allowing us to learn more about the 
causes of downtime and how to efficiently address it. In 

Section 4.1, we outline some early results from the DCA 
project. 
 

3. Watson: System Failure Reporting 
Watson is an error reporting framework originally 
developed by the Microsoft Office team but now in use by 
Windows XP, Internet Explorer, MSN Explorer, Visual 
Studio 7, and other products in addition to the Office 
suite.   It is a multi-tier system that automatically returns 
to the development team reports on failures experienced 
by customers along with sufficient information to 
diagnosis many of these failures.  

Each software system under Watson monitoring 
has an additional software component responsible for 
detecting and reporting failures back to the data collection 
system.  The backend system is composed of many cloned 
IIS web servers, each of which stores data across a 
firewall into a SQL Server database and a file store for the 
bulk debug information.   The workload is distributed 
over the IIS systems by Windows Load Balancing Server.  
The backend database server is replicated for redundancy 
and the data is post processed into a system that is 
accessible to the product development team.   

When a failure is detected, the user is informed 
and given the opportunity to send the failure data back to 
the development team.  For privacy protection reasons, 
we first prompt users on whether they would like to send 
the failure data and this dialog defaults to “do not send” to 
reduce the likelihood of accidental transmission.  There 
was considerable concern early on in the development of 
Watson that customers would be unwilling to return 
failure data.  However, we have learned in use that a 
substantial percentage of customers are very motivated to 
see the products they use improve and, as a consequence, 
are willing to partner with the development team and 
return this data.  Encouraging customer participation has 
not been difficult and, although we do not have statistical 
analysis to support the assertion, we believe that we do 
receive feedback from a sizable and statistically valid 
cross-section of the customer base. 

Since we have the same privacy concerns on the 
server side as we do on the client, it is very important that 
participation in the program be optional and the default be 
not to participate.  However, unlike the client side, it is 
not practical to ask the customer if they are willing to 
send failure data using a pop-up window on a server-side 
system.  Addressing this concern, we prompt for 
participation at server install or upgrade time and persist 
this setting until subsequently changed.  We have not yet 
had enough experience with this approach to know 
whether this particular form of “opting in” reduces 
participation.  We expect that it may but, even if 
participation dropped to 10%, were that a valid cross 
section of the customer base, it would be more than 
adequate for these purposes. 



In SQL Server, we have Watson enabled for 
product installation failures, errors found by the core 
engine, the data replication sub-system, the OLAP engine, 
and the system management tools. On setup failures, we 
return the log from the setup execution.  On operational-
server error conditions, we return the current point of 
execution and the call stack that got there, system 
configuration information, the modules currently loaded 
into the server address space, the type of exception if 
applicable, and global and local variable state.   

A key to managing potentially large amounts of 
data is to have an efficient and accurate means of 
aggregating the results into failure classes.  Rather than 
looking at all failures individually, we want them sorted 
into unique failures and we want the count of all instances 
of that failure.  In essence, we need a signature or unique 
name for the failure.  In SQL Server, we use a hash of the 
stack trace on the basis that all failures at a given point in 
the code, with identical call stacks to reach that point, are 
very likely to represent the same error.  So, for every 
unique stack trace, we have a count of the number of 
instances of that issue that have been reported.  This 
allows us to concentrate first on those issues with the 
greatest number of instances and, as one might guess, the 
distribution is very highly skewed, with a small number of 

issues causing the vast majority of the reports.  This is the 
ideal situation where a moderate engineering investment 
has substantial leverage.  When development investment 
is driven by better quality information, we are able to 
address issues much more quickly and much more 
efficiently. 

In addition to using this bucketized design, 
where we use a stack trace hash as a means of counting 
the number of instances of a unique error type, we can 
also use this problem identification mechanism to return 
custom information back to users.  Rather than always 
returning the default “thanks for contributing to the 
improvement of the product”, for those issues where we 
have previously identified that a code change is required 
to fix the problem, we can return an explanation with a 
URL to the appropriate QFE (Quick Fix Engineering).  In 
these cases, we are both tracking the failures and helping 
customers get the fixes they need more quickly. 

Continuing to build on the bucketized design, we 
also leverage this tracking system as a means of 
restricting the amount of data that is sent.  If we already 
have several instances of a given failure and believe we 
do not need further stack data to determine the cause, we 
can configure the system to count  future instances of the 
problem without sending all the system state and debug 

Figure 1: Internal Watson Query Page 



information that we normally transmit.  In addition to 
being able to request less information on a given error 
condition, we can also chose to request that more be sent.  
If a particularly difficult problem is being debugged, the 
server-side Watson systems can be configured to request, 
for a specific error instance, that additional state 
information be transmitted back from the customer to aid 
in the debug effort. 

Once the data has been delivered to the 
development team, it must be made available in a form 
that can be used quickly and easily by all engineers on the 
team.  Watson achieves this through a web-based query 
page.  As an example, in Figure 1 we are requesting a 
report on all issues experienced by the core SQL Server 
engine (sqlservr.exe).  In this report, a list of issues is 
returned sorted by number of times that particular issue 
has been reported.  Any of these issues can be double 
clicked to see more detail and example of which is shown 
in Figure 2. 

From the details display shown in Figure 2, we can 
see that this error condition has ten instances reported.  
The issue shown in the example appears to be a problem 
in the SQL Server Metadata Manager.  In many cases, the 
data available from this report, or from the additional data 
available via live links, are sufficient to locate and fix a 

problem without deeper investigation or needing to 
request more detailed data. 
 

4. Data Collection Agent 
In the previous section, we explained how we have 
developed and deployed Watson support in all retail 
copies of SQL Server 2000 Service Pack Three.  Early 
experience suggests that Watson is very effective at 
rapidly feeding back to development teams the top N 
problems experienced in real operational environments.  
However Watson only reports problems and not the 
conditions that lead to the problems or detailed tracking 
information on how the system was performing when 
there were no problems.  To address this we have 
developed an ASAF system, currently in limited 
operational-deployment, that tracks not only failures but 
uptime, downtime, and numerous other metrics of system 
activity.  Our goals for this work are to obtain actual 
customer-experienced uptime, learn the causes of system 
downtime, and both drive and track release-to-release 
availability improvements while reducing customer 
administration and product support costs.  In the longer 
term, we hope to find correlations between systems states 
and subsequent failures, allowing proactive failure 
prediction and recovery.   

Figure 2: Watson Issue Detail Display 



The Data Collection Agent (DCA) is written as a 
four-tier system (Figure 3).  Data is collected by an agent 
running on each system being monitored.  That data is 
sent to a central data collection server, of which there 
needs to be at least one in each customer enterprise.  The 
data is aggregated at the Data Collection Server and then 
sent using the Watson infrastructure up to the Watson web 
farm.  From there the data is loaded into a SQL Server 
database for further analysis. 

The data collected on each server is divided into three 
broad classes.  The first class is a start-up snap-shot that 
includes:  
• Operating system version and service level 
• Database version and service level 
• Syscurconfigs table 
• SQL server log files and error dump files 
• SQL Server trace flags 
• OEM system ID 
• Number of processors 
• Processor Type 
• Active processor mask 
• % memory in use 
• Total physical memory 
• Free physical memory 
• Total page file size 
• Free page file size 
• Total virtual memory 

• Free virtual memory 
• Disk info – Total & available space 
• WINNT cluster name if shared disk cluster 
 
The second class is made up of SQL Server state 
information, including: 
• SQL Server trace flags 
• Sysperfinfo table 
• Sysprocesses table 
• Syslocks table 
• SQL Server response time 
• SQL server specific performance counters: 

o \\SQLServer:Cache Manager(Adhoc SQL 
Plans)\\Cache Hit Ratio 

o \\SQLServer:Cache Manager(Misc. 
Normalized Trees)\\Cache Hit Ratio" 

o \\SQLServer:Cache Manager(Prepared SQL 
Plans)\\Cache Hit Ratio 

o \\SQLServer:Cache Manager(Procedure 
Plans)\\Cache Hit Ratio 

o \\SQLServer:Cache Manager(Replication 
Procedure Plan)\\CacheHitRatio 

o \\SQLServer:Cache Manager(Trigger 
Plans)\\Cache Hit Ratio 

o \\SQLServer:General Statistics\\User 
Connections 

 

Figure 3: Data Collection Agent Architecture 



The third and final class of data is comprised of operating 
system state which includes: 
• Application and system event logs 
• Select OS performance counters: 
• \\Memory\\Available Bytes 
• \\PhysicalDisk(_Total)\\% Disk Time 
• \\PhysicalDisk(_Total)\\Avg. Disk sec/Read 
• \\PhysicalDisk(_Total)\\Avg. Disk sec/Write 
• \\PhysicalDisk(_Total)\\Current Disk Queue length 
• \\PhysicalDisk(_Total)\\Disk Reads/sec 
• \\PhysicalDisk(_Total)\\Disk Writes/sec 
• \\Processor(_Total)\\% Processor Time 
• \\Processor(_Total)\\Processor Queue length 
• \\Server\\Server Sessions 
• \\System\\File Read Operations/sec 
• \\System\\File Write Operations/sec 
• \\System\\Procesor Queue Length 
 

On system start-up, DCA takes the initiation 
snap-shot (class one above) and then, every minute during 
normal operation, it takes a snap-shot of the SQL and O/S 
state (classes two and three above).  Under normal 
operating conditions, every fifth of the once-per-minute 
collections are returned.  But, in the event of a system 
failure, we send all one minute snap-shots over the last ten 
minutes.  This means we have five minute granularity 
during standard system operation but one minute 
granularity snap-shots during the ten minutes prior to a 
system failure. 
 

4.1 DCA Results 
The purpose of the fine grained DCA data is manifold.  It 
gives an accurate measure of product availability in actual 
customer use.  And, during product beta release cycles, 
the data returned can be used to set specific goals on 
product availability improvements and help the 
development team understand exactly what is being 
achieved and whether further work is needed prior to 
release.  This may sound like a minor achievement but, 
when an attribute can not be measure accurately, it is very 
difficult to drive substantial and sustained improvement.  
Further, since many customer organizations do not have 
accurate and comparable data on system uptime, it is 
difficult to reliably get this availability data directly from 
them. 

Through this project we have learned that 
administrative procedures and experience levels have a 
substantial impact on the availability achieved, which 
implies that test systems do not accurately model 
customer usage, due to substantially different 
administrative models, training, and responsibilities.   

In addition to tracking achieved system 
availability, we have fine-grained data on system state 
changes and how they correlate with subsequent system 

failures.  From this we have learned some not particularly 
surprising results, such as finding that systems are much 
more likely to fail after new software has been installed 
than multiple months after installation.  That particular 
finding was expected but other less obvious scenarios can 
also be evaluated.  For example, systems with a large 
number of locks held (live locks or non-detected 
deadlocks) frequently get hard cycled as do systems with 
very high CPU loads.  The implication from this 
correlation is that, when a system is performing poorly, it 
is likely that an administrator will simply restart the 
system.  We could partially address this issue by 
providing better diagnostic tools so that a restart would be 
unnecessary, and we could work on reducing restart times 
when systems are cycled.  Simple steps that can be taken 
to reduce restart times when a system cycle is probable 
include check-pointing system state.  We believe that 
simple and non-obvious actions such as a well-placed 
checkpoint can improve availability by reducing the 
downtime caused by a future administrative action that we 
can predict to be likely.  Relationships between metrics 
such as these are very hard to find on test systems, and 
really only show up reliably in actual customer-
administered environments. 

The DCA system is still in an early research phase 
and, although it is deployed on over 120 servers at this 
time, it is still a long way from deployment in the 
standard retail version of SQL Server as we have done 
with Watson.   However, even as an immature system, 
DCA has already conclusively shown many correlations 
that we had always suspected to exist from experience 
working with customers and, in a few cases, we have 
found unexpected correlations: 
 
• There is a high correlation between operating system 

reboot and improper database shutdown.  Upon closer 
investigation, we have learned that the Windows 
Service Control Manager does not always allow 
sufficient time for very large database systems to 
fully checkpoint on shutdown, vastly increasing 
recovery time and unnecessarily increasing downtime 
duration.  This is a good example of a small issue that 
is fairly easy to fix that can have a substantial impact 
on overall database availability, in that fully 5% of 
the unclean shutdowns that we have tracked were 
contributed by this issue and, each time it occurs, the 
potential downtime contributed can run into the tens 
of minutes. 

• When looking at all instances of lost availability, we 
saw that fully 66% are shutdowns initiated by the 
system administrator.  This is a higher number than 
found in past studies and it could be partly 
contributed to by the fact that these systems under 
monitoring are running pre-release beta software, 
although they are fully operational production 
systems.  We need to gather more data on this trend. 



• Software upgrades of both the O/S and database 
system contribute significantly to instances of system 
shutdowns, with 19% of the clean shutdowns and 5% 
of the unclean shutdowns following software 
upgrades (again the contribution of running beta 
software may artificially increase this result). 

• System reboots tend to occur in groups of more than 
one, which is to say that a single reboot is an 
excellent predictor of another being highly likely. 

• Database management system hard failure is not a 
significant contributor to lost system availability, 
with this factor disappearing into the statistical noise.  
As we get more data, we will be able to more 
precisely assess the contribution of DBMS failure, 
but it appears at this point to only be a minor factor, 
which is to say that other factors contributing to 
downtime represent much higher improvement 
leverage. 

• 10% of the clean shutdowns were instances of the 
administrator entering single user mode.  Typically 
this is done to upgrade software, perform offline 
utility operations, perform schema maintenance, and 
sometimes for testing purposes.  More investigation 
is required to better understand the primary factors 
driving the decision to shift to single user mode. 

• When looking at the data closely, we see many minor 
instances of failures of related subsystems and 
components that do not appear to have received any 
administrative attention, indicating that it is quite 
likely that the administrators were unaware of these 
issues.  We believe that many hard failures are the 
results of several errors accumulating and, if this 
trend is established, then one action we can take as 
systems providers to mitigate this is to make it more 
obvious when a component or subsystem needs 
administrative attention.  By making issues clear and 
recommending corrective action, we may be able to 
avoid subsequent hard failures and lost system 
availability. 

 

4.2 Future Work 
In addition to helping to better understand the causes of 
system downtime, the DCA monitoring system has 
potential in other applications as well. Some that we are 
considering as potential future area of investigation: 
• Database feature usage: which features are actually 

used by a broad cross section of customers and which 
are of little value?  This information can help drive 
development investment and help reduce the near 
infinite accumulation of features in current systems 
by quantifying how much actual customer use a 
feature is receiving. 

• Beta release quality assessment: support to quantify 
customer usage of product features during the beta 
program which can help the product team understand 

the quality and completeness of the beta program and 
whether more beta customers are required to 
adequately test the product. 

• Predictive repair or corrective action: If we are able 
to reliably predict when the probability of a system 
failure is high, we can take proactive corrective 
action.  Simple examples include restricting the 
database request admission policy when resources are 
scarce and the system is entering an unstable mode.  
A more radical approach being advocated by 
Software Rejuvenation researchers is to schedule a 
system reboot on the assumption that aggressive, yet 
planned, action will yield better system availability 
than simply waiting for the expected failure.  
Although the users will still experience a downtime, 
we can forewarn the administrators and reduce the 
duration of system unavailability by properly shutting 
down the system. 

 
Our Data Collection Agent work will continue, but 

early results are both confirming some of what 
experienced database developers would expect and, in 
some cases, we are finding issues where we didn’t predict 
the impact or frequency of the failure.  Overall, a deeper 
understanding of the causes of downtime is being 
achieved and, with that better understanding, comes an 
improved ability to act. 
 

5. Summary 
In this work, we have argued that the software 
development process is inefficient at translating customer 
experience, especially negative experience, into product 
improvements.  In essence, we are arguing that lack of 
knowledge across the industry is restricting progress on 
some of the most important requirements, most notably, 
system availability.  We believe that Active Server 
Availability Feedback is an effective means to gather a 
deeper and more detailed understanding of how systems 
are being used, what issues are encountered in normal 
customer usage, and what issues, be they product or 
administrative, are causing downtime and to quantify 
these contributions.  Two Active Server Availability 
Feedback systems were presented; one now in production 
use in a commercial DBMS and another that is still in an 
early research phase.  Results were presented for both. 
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